
GEOMETRIC DEEP LEARNING
(L65)

Pietro Liò
Petar Veličković

University of Cambridge
Google DeepMind / University of Cambridge

Lent Term 2024
CST Part III / MPhil ACS / MPhil MLMI

1. INTRODUCTION TO GROUPS
AND REPRESENTATIONS

The fundamentals of capturing the regularity in nature

Petar Veličković

In general, learning functions in high dimensions is intractable
Number of samples required grows exponentially with dimension

Learning in high dimensions

We can inject assumptions about geometry through inductive biases
Restrict the functions to ones that respect the geometry.
This can make the high-dimensional problem more tractable!

Some popular examples:
• Image data should be processed independently of shifts

Geometry to the rescue!

We can inject assumptions about geometry through inductive biases
Restrict the functions to ones that respect the geometry.
This can make the high-dimensional problem more tractable!

Some popular examples:
• Image data should be processed independently of shifts
• Spherical data should be processed independently of rotations

Geometry to the rescue!

We can inject assumptions about geometry through inductive biases
Restrict the functions to ones that respect the geometry.
This can make the high-dimensional problem more tractable!

Some popular examples:
• Image data should be processed independently of shifts
• Spherical data should be processed independently of rotations
• Graph data should be processed independently of isomorphism

Geometry to the rescue!

We can inject assumptions about geometry through inductive biases
Restrict the functions to ones that respect the geometry.
This can make the high-dimensional problem more tractable!

Some popular examples:
• Image data should be processed independently of shifts
• Spherical data should be processed independently of rotations
• Graph data should be processed independently of isomorphism

We will now attempt to formalise this!

Geometry to the rescue!

To be able to talk about geometry of data, we need to formalise where
the data lives (domain) and how to featurise it (signal)

Once we understand data domains, we can then formalise
symmetries of those domains (groups)

Equipped with groups, we need to formalise how they transform the
data domains (group actions)

Deep learning concerns itself with linear algebra; we need to be able
to talk about group actions as matrix operations (representations)

Using representations, we can formalise what it means for a deep
learning model to respect symmetries (invariance & equivariance)

A roadmap for our formalisation

A signal on Ω is a function " ∶ Ω	 → 	&, where:
• Ω is the domain (e.g. set of pixels/nodes/…)
• & is a vector space, whose dimensions are

called channels

The space of &-valued signals on Ω is defined as
' Ω, & = " ∶ Ω → &

We will often omit &, and just write ' Ω

Signals on discrete, finite Ω expressible as matrices
* ∈ ℝ ! ×#$% &

where the ith row gives features of the ith node

The space of signals on a geometric domain

R

G

B

Ω = ℤ!	×	ℤ! & = ℝ"

Example: '	×	' RGB image

Vector space structure of signals

We can add signals and multiply by scalars:
-" + /0 1 = -" 1 + /0(1), where -, / ∈ ℝ and 1 ∈ Ω

⟹ The space of signals is a vector space! (possibly infinite dimensional)
Can also define an inner product on signals, given inner product , &
on & and a measure 5 on Ω (⟹ The space of signals is a Hilbert space!)

", 0 = 6
!

" 1 , 0(1) & d5(1)

Exercise: Verify that the above satisfies the inner product axioms

+ =

A symmetry of an object is a transformation of that object
that leaves it unchanged

Symmetries

The symmetries of a triangle,
as generated by 120-degree rotations R and flips F.

1

2 3

2

3 1

1

3 2

2

1 3

3

2 1
3

1 2

Symmetry group

A symmetry of an object is a transformation of that object that
leaves it unchanged

Observe that this immediately defines some properties:
• The identity transformation is always a symmetry
• Given two symmetry transformations, their composition (doing

one after the other) is also a symmetry
• Given any symmetry, it must be invertible
• Moreover, its inverse is also a symmetry

Collecting all these axioms together, we recover a standard
mathematical object: the group

Abstract groups

A group is a set 8	 with a binary operation denoted 9:	
satisfying the following properties:

• Associativity: 9: ; = 9 :; for all 9, :, ; ∈ 8
• Identity: there exists a unique < ∈ 8 satisfying

9< = <9	=	9
• Inverse: for each 9 ∈ 8 there is a unique inverse
9,- ∈ 8	,	such that	99,- = 9,-9 = <

• Closure: for every 9, : ∈ 8, we have 9: ∈ 8 Rotational symmetries of the cube
(group !!)

Symmetry groups, abstract groups & group actions

Symmetry group: a group of transformations 9 ∶ Ω → Ω
The group operation is composition

Symmetry groups, abstract groups & group actions

Symmetry group: a group of transformations 9 ∶ Ω → Ω
The group operation is composition

Abstract group: a set of elements together with a composition rule,
satisfying the group axioms

(an abstract group does not directly tell us how to transform data!)

Symmetry groups, abstract groups & group actions

e.g.: Euclidean 2D motions ! = ℝ! (angle + translation) acting on Ω = ℝ":

(, *#, *$ +, , ↦ + cos (+ , sin (+ *#, + sin (+ , cos (+ *$ 	
Exercise: Verify this satisfies the group action axioms

Symmetry group: a group of transformations 9 ∶ Ω → Ω
The group operation is composition

Abstract group: a set of elements together with a composition rule,
satisfying the group axioms

Group action: a map 8	×	Ω → Ω (denoted 9, 1 ↦ 91) such that
9 :1 = 9: 1

<1 = 1

Symmetries of Ω acting on signals " Ω
Given an action of 8 on Ω, we automatically obtain an action of 8
on the space of signals '(Ω)	:

!	# $ = #(!!"$)

Linearity of the group action

+ =

+ =

Apply . = (0! , 0")

If the signals support a vector space, such a group action on signals
9	" 1 = "(9,-1)

is linear!

Linearity of the group action

If the signals support a vector space, such a group action on signals
9	" 1 = "(9,-1)

is linear!

This is excellent news for us, as deep learning is basically linear algebra
And we will be able to describe group actions as matrix multiplication!

For the time being, we will assume our domain is discrete and finite
That is, that we can represent our domain using a matrix * ∈ ℝ ! ×3

A real representation of !	on a finite vector space & is a map '# ∶ ! → ℝ$×$,
assigning to each element * ∈ ! an invertible matrix '#(*), and satisfying

'# *- = '# * '# - , 	 ∀*, - ∈ !

Group representations

Group representations

A real representation of !	on a finite vector space & is a map '# ∶ ! → ℝ$×$,
assigning to each element * ∈ ! an invertible matrix '#(*), and satisfying

'# *- = '# * '# - , 	 ∀*, - ∈ !

The dimensionality of the matrix produced by ?4 may depend on
many factors, such as the size of the corresponding Ω

?4 does not need to assign different matrices to different elements of 8
(if it does, then it is a faithful representation)

Representations can be easily generalised to infinite spaces---the map
?4 ∶ 8 → ' Ω → ' Ω would output an invertible linear function
(strictly speaking, 5# ∶ 7 → GL 4 , where GL 4 is the general linear group over 4)

Group representations

<latexit sha1_base64="ZUU0HxYHekvFsTPhYGjLFLjnzBk=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokoehGKXjy2YD+gDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz321lZXVvf2CxsFbd3dvf2SweHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7qZ+6wmV5rF8MOME/YgOJA85o8ZK9ZteqexW3BnIMvFyUoYctV7pq9uPWRqhNExQrTuemxg/o8pwJnBS7KYaE8pGdIAdSyWNUPvZ7NAJObVKn4SxsiUNmam/JzIaaT2OAtsZUTPUi95U/M/rpCa89jMuk9SgZPNFYSqIicn0a9LnCpkRY0soU9zeStiQKsqMzaZoQ/AWX14mzfOKd1lx6xfl6m0eRwGO4QTOwIMrqMI91KABDBCe4RXenEfnxXl3PuatK04+cwR/4Hz+AI4fjMU=</latexit>=5# ' =

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

$

5# 1

Example:
• The group of 1D (circular) shifts, 7 = ℤ,+
• The domain Ω = ℤ% = {0, 1, 2, 3, 4} (e.g. short audio signal)
• The action of . = ' on D ∈ Ω: ', D ↦ ' + D mod	5
• The representation on 4 Ω :

Exercise: Derive the representation for the group of 90-degree rotations on 3x3 grids

A real representation of !	on a finite vector space & is a map '# ∶ ! → ℝ$×$,
assigning to each element * ∈ ! an invertible matrix '#(*), and satisfying

'# *- = '# * '# - , 	 ∀*, - ∈ !

Group invariance

We can now formally describe how to exploit the symmetries in 8!

Group invariance

We can now formally describe how to exploit the symmetries in 8!

A function @ ∶ ' Ω → A is 8-invariant if @ ?4 9 " = @ " for all
9 ∈ 8, i.e., its output is unaffected by the group action on the input.

Group invariance

We can now formally describe how to exploit the symmetries in 8!

e.g. image classification: output class won’t depend on image shifts

A function @ ∶ ' Ω → A is 8-invariant if @ ?4 9 " = @ " for all
9 ∈ 8, i.e., its output is unaffected by the group action on the input.

!4 " # #

=! 	 ! 	=

Orbits and equivalence relations

A A

AA

A A

AA

B B

BB

B B

BB
$-equivalence

Satisfies the axioms of an equivalence relation:

1. Reflexivity:

• (Because & contains the identity)

2. Transitivity:

• (Because & is closed under composition)

3. Symmetry:

• (Because & is closed under inverses)

(# = !#	 # ∈ *, ! ∈ ,}	

! ∼! # ⟺ ∃& ∈ (∶ &! = #

" ∼7 "

" ∼7 0 ∧ 0 ∼7 D ⟺ " ∼7 D

" ∼7 0 ⟺ 0 ∼7 "

A A

AA

A A

AA

B B

BB

B B

BB

A

A

B

B

#-invariant representations

Invariance is suitable when we need a single output over the entire
domain. What if we need an output in each domain element?

Also, even if a single output is OK, making the intermediate
representations invariant may lose critical information:

The relative pose of object parts contains critical information
(Hinton et al., ICANN’11)

The problem with invariance

Original Rotate whole Rotate parts

Group equivariance

We proceed to define a more fine-grained notion of regularity:

A function @ ∶ ' Ω → F Ω is 8-equivariant if, for all 9 ∈ 8,
@ ?4 9 " = ?K 9 @ " , i.e., applying a group action on the input

affects the output in the same way.

Group equivariance

We proceed to define a more fine-grained notion of regularity:

e.g. image segmentation: segmentation mask must follow any
shifts in the input

Note that invariance is a special case of equivariance (for which ?K?)

A function @ ∶ ' Ω → F Ω is 8-equivariant if, for all 9 ∈ 8,
@ ?4 9 " = ?K 9 @ " , i.e., applying a group action on the input

affects the output in the same way.

Equivariance as symmetry-consistent generalisation

A

A

Feature space

Input space

A

A

A This cannot happen!
Equivariant net must generalize

consistently across the whole orbit.

Assume
@ " = @(0) ?K 9

?4 9 	"

?4 9 	0"

0 Equivariance:

@ ?4 9 	" = ?K 9 	@ "

Equivariance as symmetry-consistent generalisation

A

Feature space

Input space

A

A

A
?K 9

?4 9 	"

?4 9 	0"

0

A

Then
@ ?4 " = @ ?4 0

A

Assume
@ " = @(0)

Equivariance:

@ ?4 9 	" = ?K 9 	@ "

The building blocks of Geometric Deep Learning

Let Ω and Ω′ be domains, 8 a symmetry group over Ω.
Write ΩL ⊆ Ω if Ω′ can be considered a compact version of Ω.

We define the following building blocks:

Linear 8-equivariant layer J ∶ ' Ω, & → 	'(ΩL, &L),
satisfying J 9. " = 9. J(") for all 9 ∈ 8 and " ∈ '(Ω, &).

Nonlinearity K ∶ 	& → &′ applied element-wise as L " 1 = K(" 1).

Local pooling (coarsening) M ∶ ' Ω, & → 	'(ΩL, &), such that ΩL ⊆ Ω.

8-invariant layer (global pooling) N ∶ ' Ω, & → A,
satisfying N 9. " = N " for all 9 ∈ 8 and " ∈ '(Ω, &).

The building blocks of Geometric Deep Learning

Let Ω and Ω′ be domains, 8 a symmetry group over Ω.
Write ΩL ⊆ Ω if Ω′ can be considered a compact version of Ω.

We define the following building blocks:

Linear 8-equivariant layer J ∶ ' Ω, & → 	'(ΩL, &L),
satisfying J 9. " = 9. J(") for all 9 ∈ 8 and " ∈ '(Ω, &).

Nonlinearity K ∶ 	& → &′ applied element-wise as L " 1 = K(" 1).

Local pooling (coarsening) M ∶ ' Ω, & → 	'(ΩL, &), such that ΩL ⊆ Ω.

8-invariant layer (global pooling) N ∶ ' Ω, & → A,
satisfying N 9. " = N " for all 9 ∈ 8 and " ∈ '(Ω, &).

Linear equivariant layer

Invariant “tail” layer
(if necessary)

The building blocks of Geometric Deep Learning

Let Ω and Ω′ be domains, 8 a symmetry group over Ω.
Write ΩL ⊆ Ω if Ω′ can be considered a compact version of Ω.

We define the following building blocks:

Linear 8-equivariant layer J ∶ ' Ω, & → 	'(ΩL, &L),
satisfying J 9. " = 9. J(") for all 9 ∈ 8 and " ∈ '(Ω, &).

Nonlinearity K ∶ 	& → &′ applied element-wise as L " 1 = K(" 1).

Local pooling (coarsening) M ∶ ' Ω, & → 	'(ΩL, &), such that ΩL ⊆ Ω.

8-invariant layer (global pooling) N ∶ ' Ω, & → A,
satisfying N 9. " = N " for all 9 ∈ 8 and " ∈ '(Ω, &).

Activation function

The building blocks of Geometric Deep Learning

Let Ω and Ω′ be domains, 8 a symmetry group over Ω.
Write ΩL ⊆ Ω if Ω′ can be considered a compact version of Ω.

We define the following building blocks:

Linear 8-equivariant layer J ∶ ' Ω, & → 	'(ΩL, &L),
satisfying J 9. " = 9. J(") for all 9 ∈ 8 and " ∈ '(Ω, &).

Nonlinearity K ∶ 	& → &′ applied element-wise as L " 1 = K(" 1).

Local pooling (coarsening) M ∶ ' Ω, & → 	'(ΩL, &), such that ΩL ⊆ Ω.

8-invariant layer (global pooling) N ∶ ' Ω, & → A,
satisfying N 9. " = N " for all 9 ∈ 8 and " ∈ '(Ω, &).

Coarsening layer

The blueprint of Geometric Deep Learning

Popular architectures as instances of GDL blueprint

Architecture Domain Ω Symmetry Group 8
CNN Grid Translation
Spherical CNN Sphere / SO(3) Rotation SO(3)
Mesh CNN Manifold Isometry Iso(Ω) /

Gauge Symmetry SO(2)
GNN Graph Permutation ΣM
Deep Sets Set Permutation ΣM
Transformer Complete Graph Permutation ΣM
E(3) GNN Geometric Graph Permutation ΣM ×

Euclidean W 3
LSTM 1D Grid Time warping

Architectures of interest

Perceptrons
Function regularity

CNNs
Translation

Group-CNNs
Global groups

GNNs
 Permutation

Intrinsic CNNs
Isometry / Gauge choice

Deep Sets / Transformers
Permutation

LSTMs
Time warping

…now it’s our
turn to study
geometry! J

