# GEOMETRIC DEEP LEARNING (L65)

Pietro LiòUniversity of CambridgePetar VeličkovićGoogle DeepMind / University of Cambridge

Lent Term 2024 CST Part III / MPhil ACS / MPhil MLMI

# 1. INTRODUCTION TO GROUPS AND REPRESENTATIONS

*The fundamentals of capturing the regularity in nature* 

Petar Veličković

# Learning in high dimensions

In general, learning functions in high dimensions is **intractable** Number of samples required grows *exponentially* with dimension



We can inject *assumptions* about **geometry** through *inductive biases* Restrict the functions to ones that *respect* the geometry. This can make the high-dimensional problem more tractable!

Some popular examples:

• **Image** data should be processed independently of **shifts** 





We can inject *assumptions* about **geometry** through *inductive biases* Restrict the functions to ones that *respect* the geometry. This can make the high-dimensional problem more tractable!

Some popular examples:

- Image data should be processed independently of shifts
- **Spherical** data should be processed independently of **rotations**



We can inject *assumptions* about **geometry** through *inductive biases* Restrict the functions to ones that *respect* the geometry. This can make the high-dimensional problem more tractable!

Some popular examples:

- **Image** data should be processed independently of **shifts**
- **Spherical** data should be processed independently of **rotations**
- **Graph** data should be processed independently of **isomorphism**



We can inject *assumptions* about **geometry** through *inductive biases* Restrict the functions to ones that *respect* the geometry. This can make the high-dimensional problem more tractable!

Some popular examples:

- Image data should be processed independently of shifts
- **Spherical** data should be processed independently of **rotations**
- **Graph** data should be processed independently of **isomorphism**

We will now attempt to **formalise** this!

# A roadmap for our formalisation

To be able to talk about geometry of *data*, we need to formalise *where* the data lives (*domain*) and how to *featurise* it (*signal*)

Once we understand data domains, we can then formalise *symmetries* of those domains (*groups*)

Equipped with groups, we need to formalise *how* they *transform* the data domains (*group actions*)

Deep learning concerns itself with *linear algebra*; we need to be able to talk about group actions as *matrix operations* (*representations*)

Using representations, we can formalise what it means for a deep learning model to *respect symmetries* (*invariance & equivariance*)

# The space of signals on a geometric domain

A *signal* on  $\Omega$  is a function  $x : \Omega \rightarrow C$ , where:

- $\Omega$  is the domain (e.g. set of pixels/nodes/...)
- *C* is a vector space, whose dimensions are called *channels*

The space of C-valued signals on  $\Omega$  is defined as  $\mathcal{X}(\Omega, C) = \{x : \Omega \to C\}$ We will often omit C, and just write  $\mathcal{X}(\Omega)$ 





Example:  $n \times n$  RGB image

## *Vector space structure of signals*

We can add signals and multiply by scalars:

 $(\alpha x + \beta y)(u) = \alpha x(u) + \beta y(u),$  where  $\alpha, \beta \in \mathbb{R}$  and  $u \in \Omega$ 



 $\Rightarrow$  The space of signals is a *vector space*! (possibly *infinite dimensional*) Can also define an *inner product* on signals, given inner product  $\langle,\rangle_{\mathcal{C}}$ on  $\mathcal{C}$  and a measure  $\mu$  on  $\Omega$  ( $\Rightarrow$  The space of signals is a *Hilbert space*!)

$$\langle x, y \rangle = \int_{\Omega} \langle x(u), y(u) \rangle_{\mathcal{C}} d\mu(u)$$

**Exercise:** Verify that the above satisfies the inner product axioms



A **symmetry** of an object is a transformation of that object that leaves it unchanged



The symmetries of a triangle, as generated by 120-degree **rotations** R and **flips** F.

# Symmetry group

A **symmetry** of an object is a transformation of that object that leaves it **unchanged** 

Observe that this immediately defines some properties:

- The **identity** transformation is always a symmetry
- Given two symmetry transformations, their **composition** (doing one after the other) is also a symmetry
- Given any symmetry, it must be **invertible**
- Moreover, its **inverse** is also a symmetry

Collecting all these *axioms* together, we recover a standard mathematical object: the **group** 

# Abstract groups

A *group* is a set  $\mathfrak{G}$  with a binary operation denoted  $\mathfrak{gh}$  satisfying the following properties:

- Associativity:  $(\mathfrak{gh})\mathfrak{k} = \mathfrak{g}(\mathfrak{h}\mathfrak{k})$  for all  $\mathfrak{g}, \mathfrak{h}, \mathfrak{k} \in \mathfrak{G}$
- *Identity*: there exists a unique  $e \in \mathfrak{G}$  satisfying

ge = eg = g

- *Inverse:* for each  $g \in \mathfrak{G}$  there is a unique inverse  $g^{-1} \in \mathfrak{G}$ , such that  $gg^{-1} = g^{-1}g = e$
- *Closure*: for every  $g, h \in \mathfrak{G}$ , we have  $gh \in \mathfrak{G}$



Rotational symmetries of the cube  $(group O_h)$ 

Symmetry groups, abstract groups & group actions

**Symmetry group**: a group of transformations  $g : \Omega \rightarrow \Omega$ The group operation is *composition*  Symmetry groups, abstract groups & group actions

**Symmetry group**: a group of transformations  $g : \Omega \rightarrow \Omega$ The group operation is *composition* 

**Abstract group**: a set of elements together with a composition rule, satisfying the group axioms

(an **abstract** group does not directly tell us how to transform data!)

Symmetry groups, abstract groups & group actions

**Symmetry group**: a group of transformations  $g : \Omega \rightarrow \Omega$ The group operation is *composition* 

**Abstract group**: a set of elements together with a composition rule, satisfying the group axioms

**Group action**: a map  $\mathfrak{G} \times \Omega \rightarrow \Omega$  (denoted  $(\mathfrak{g}, u) \mapsto \mathfrak{g}u$ ) such that  $\mathfrak{g}(\mathfrak{h}u) = (\mathfrak{g}\mathfrak{h})u$  $\mathfrak{e}u = u$ 

e.g.: Euclidean 2D motions  $\mathfrak{G} = \mathbb{R}^3$  (angle + translation) acting on  $\Omega = \mathbb{R}^2$ :  $(\theta, t_x, t_y)(x, y) \mapsto (x \cos \theta + y \sin \theta + t_x, x \sin \theta + y \cos \theta + t_y)$ **Exercise:** Verify this satisfies the group action axioms Symmetries of  $\Omega$  acting on signals  $X(\Omega)$ 

Given an action of  $\mathfrak{G}$  on  $\Omega$ , we automatically obtain an action of  $\mathfrak{G}$  on the space of signals  $\mathcal{X}(\Omega)$ :



Linearity of the group action

If the signals support a vector space, such a group action on signals  $(g x)(u) = x(g^{-1}u)$ 

is *linear*!



# Linearity of the group action

If the signals support a vector space, such a group action on signals  $(g x)(u) = x(g^{-1}u)$ 

is *linear*!

This is *excellent* news for us, as deep learning is basically *linear algebra* And we will be able to describe group actions as *matrix multiplication*!

For the time being, we will assume our domain is *discrete* and *finite* That is, that we can represent our domain using a matrix  $\mathbf{X} \in \mathbb{R}^{|\Omega| \times k}$ 

# Group representations

A real representation of  $\mathfrak{G}$  on a finite vector space  $\mathfrak{X}$  is a map  $\rho_{\mathfrak{X}} : \mathfrak{G} \to \mathbb{R}^{n \times n}$ , assigning to each element  $\mathfrak{g} \in \mathfrak{G}$  an *invertible matrix*  $\rho_{\mathfrak{X}}(\mathfrak{g})$ , and satisfying  $\rho_{\mathfrak{X}}(\mathfrak{g}\mathfrak{h}) = \rho_{\mathfrak{X}}(\mathfrak{g})\rho_{\mathfrak{X}}(\mathfrak{h}), \quad \forall \mathfrak{g}, \mathfrak{h} \in \mathfrak{G}$ 

# Group representations

A real representation of  $\mathfrak{G}$  on a finite vector space  $\mathfrak{X}$  is a map  $\rho_{\mathfrak{X}} : \mathfrak{G} \to \mathbb{R}^{n \times n}$ , assigning to each element  $\mathfrak{g} \in \mathfrak{G}$  an *invertible matrix*  $\rho_{\mathfrak{X}}(\mathfrak{g})$ , and satisfying  $\rho_{\mathfrak{X}}(\mathfrak{g}\mathfrak{h}) = \rho_{\mathfrak{X}}(\mathfrak{g})\rho_{\mathfrak{X}}(\mathfrak{h}), \quad \forall \mathfrak{g}, \mathfrak{h} \in \mathfrak{G}$ 

The dimensionality of the matrix produced by  $\rho_{\chi}$  may depend on many factors, such as the size of the corresponding  $\Omega$ 

 $\rho_{\chi}$  does *not* need to assign *different* matrices to *different* elements of  $\mathfrak{G}$  (if it does, then it is a *faithful representation*)

Representations can be easily generalised to *infinite* spaces---the map  $\rho_{\mathcal{X}} : \mathfrak{G} \to (\mathcal{X}(\Omega) \to \mathcal{X}(\Omega))$  would output an *invertible linear function* (strictly speaking,  $\rho_{\mathcal{X}} : \mathfrak{G} \to GL(\mathcal{X})$ , where  $GL(\mathcal{X})$  is the general linear group over  $\mathcal{X}$ )

# Group representations

A real representation of  $\mathfrak{G}$  on a finite vector space  $\mathfrak{X}$  is a map  $\rho_{\mathfrak{X}} : \mathfrak{G} \to \mathbb{R}^{n \times n}$ , assigning to each element  $\mathfrak{g} \in \mathfrak{G}$  an *invertible matrix*  $\rho_{\mathfrak{X}}(\mathfrak{g})$ , and satisfying  $\rho_{\mathfrak{X}}(\mathfrak{g}\mathfrak{h}) = \rho_{\mathfrak{X}}(\mathfrak{g})\rho_{\mathfrak{X}}(\mathfrak{h}), \quad \forall \mathfrak{g}, \mathfrak{h} \in \mathfrak{G}$ 

Example:

- The group of 1D (circular) shifts,  $\mathfrak{G} = (\mathbb{Z}, +)$
- The domain  $\Omega = \mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$  (e.g. short audio signal)
- The action of g = n on  $u \in \Omega$ :  $(n, u) \mapsto n + u \pmod{5}$
- The representation on  $\mathcal{X}(\Omega)$ :

$$\rho_{\mathcal{X}}(n) = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}^n$$



**Exercise:** Derive the representation for the group of *90-degree rotations* on 3x3 grids

# Group invariance

We can now *formally* describe how to *exploit* the symmetries in  $\mathfrak{G}$ !

#### Group invariance

We can now *formally* describe how to *exploit* the symmetries in  $\mathfrak{G}$ !

A function  $f : \mathcal{X}(\Omega) \to \mathcal{Y}$  is  $\mathfrak{G}$ -*invariant* if  $f(\rho_{\mathcal{X}}(\mathfrak{g})x) = f(x)$  for all  $\mathfrak{g} \in \mathfrak{G}$ , i.e., its output is unaffected by the group action on the input.

#### Group invariance

We can now *formally* describe how to *exploit* the symmetries in  $\mathfrak{G}$ !

A function  $f : \mathcal{X}(\Omega) \to \mathcal{Y}$  is  $\mathfrak{G}$ -*invariant* if  $f(\rho_{\mathcal{X}}(\mathfrak{g})x) = f(x)$  for all  $\mathfrak{g} \in \mathfrak{G}$ , i.e., its output is unaffected by the group action on the input.

e.g. **image classification**: output class won't depend on image **shifts** 

$$f\left(\begin{array}{c} \mathbf{x} \\ \mathbf{x} \end{array}\right) = f\left(\begin{array}{c} \mathbf{x} \\ \mathbf{x} \end{array}\right) = \mathbf{x}$$

## Orbits and equivalence relations



 $O_{x} = \{gx \mid x \in \mathcal{X}, g \in \mathfrak{G}\}$ 

# $\mathfrak{G}\text{-equivalence}$ $x \sim_{\mathfrak{G}} y \Leftrightarrow \exists \mathfrak{g} \in \mathfrak{G} : \mathfrak{g} x = y$

Satisfies the axioms of an equivalence relation:

- 1. Reflexivity:  $x \sim_{\mathfrak{G}} x$ 
  - (Because 6 contains the identity)
- 2. Transitivity:  $x \sim_{\mathfrak{G}} y \wedge y \sim_{\mathfrak{G}} z \Leftrightarrow x \sim_{\mathfrak{G}} z$ 
  - (Because 6 is closed under composition)
- 3. Symmetry:  $x \sim_{\mathfrak{G}} y \Leftrightarrow y \sim_{\mathfrak{G}} x$ 
  - (Because 6 is closed under inverses)

# **G**-invariant representations



#### *The problem with invariance*

Invariance is suitable when we need a *single* output over the *entire* domain. What if we need an output in *each* domain element?

Also, even if a single output is OK, making the intermediate representations invariant may lose *critical* information:



The *relative pose* of object parts contains critical information (Hinton *et al.*, ICANN'11)

## Group equivariance

We proceed to define a more *fine-grained* notion of regularity:

A function  $f : \mathcal{X}(\Omega) \to \mathcal{Z}(\Omega)$  is  $\mathfrak{G}$ -equivariant if, for all  $g \in \mathfrak{G}$ ,  $f(\rho_{\mathcal{X}}(g)x) = \rho_{\mathcal{Z}}(g)f(x)$ , i.e., applying a group action on the input affects the output in the same way.

# Group equivariance

We proceed to define a more *fine-grained* notion of regularity:

A function  $f : \mathcal{X}(\Omega) \to \mathcal{Z}(\Omega)$  is  $\mathfrak{G}$ -equivariant if, for all  $g \in \mathfrak{G}$ ,  $f(\rho_{\mathcal{X}}(g)x) = \rho_{\mathcal{Z}}(g)f(x)$ , i.e., applying a group action on the input affects the output in the same way.

e.g. **image segmentation**: segmentation mask must **follow** any shifts in the input



Note that invariance is a *special case* of equivariance (for which  $\rho_{z}$ ?)

Equivariance as symmetry-consistent generalisation



Equivariance as symmetry-consistent generalisation



Let  $\Omega$  and  $\Omega'$  be domains,  $\mathfrak{G}$  a symmetry group over  $\Omega$ . Write  $\Omega' \subseteq \Omega$  if  $\Omega'$  can be considered a compact version of  $\Omega$ .

We define the following building blocks:

*Linear*  $\mathfrak{G}$ *-equivariant layer*  $B : \mathcal{X}(\Omega, \mathcal{C}) \to \mathcal{X}(\Omega', \mathcal{C}')$ , satisfying  $B(\mathfrak{g}, x) = \mathfrak{g}.B(x)$  for all  $\mathfrak{g} \in \mathfrak{G}$  and  $x \in \mathcal{X}(\Omega, \mathcal{C})$ .

*Nonlinearity*  $\sigma$  :  $C \rightarrow C'$  applied element-wise as  $(\sigma(x))(u) = \sigma(x(u))$ .

*Local pooling (coarsening)*  $P : \mathcal{X}(\Omega, \mathcal{C}) \to \mathcal{X}(\Omega', \mathcal{C})$ , such that  $\Omega' \subseteq \Omega$ .

 $\mathfrak{G}$ -invariant layer (global pooling)  $A : \mathfrak{X}(\Omega, \mathcal{C}) \to \mathcal{Y}$ , satisfying  $A(\mathfrak{g}, x) = A(x)$  for all  $\mathfrak{g} \in \mathfrak{G}$  and  $x \in \mathfrak{X}(\Omega, \mathcal{C})$ .

Let  $\Omega$  and  $\Omega'$  be domains,  $\mathfrak{G}$  a symmetry group over  $\Omega$ . Write  $\Omega' \subseteq \Omega$  if  $\Omega'$  can be considered a compact version of  $\Omega$ .

We define the following building blocks:

*Linear*  $\mathfrak{G}$ *-equivariant layer*  $B : \mathcal{X}(\Omega, \mathcal{C}) \to \mathcal{X}(\Omega', \mathcal{C}')$ , satisfying  $B(\mathfrak{g}. x) = \mathfrak{g}. B(x)$  for all  $\mathfrak{g} \in \mathfrak{G}$  and  $x \in \mathcal{X}(\Omega, \mathcal{C})$ .

Linear equivariant layer

*Nonlinearity*  $\sigma$  :  $C \rightarrow C'$  applied element-wise as  $(\sigma(x))(u) = \sigma(x(u))$ .

*Local pooling (coarsening)*  $P : \mathcal{X}(\Omega, \mathcal{C}) \to \mathcal{X}(\Omega', \mathcal{C})$ , such that  $\Omega' \subseteq \Omega$ .

 $\mathfrak{G}$ -invariant layer (global pooling)  $A : \mathfrak{X}(\Omega, \mathcal{C}) \to \mathcal{Y}$ , satisfying  $A(\mathfrak{g}, x) = A(x)$  for all  $\mathfrak{g} \in \mathfrak{G}$  and  $x \in \mathfrak{X}(\Omega, \mathcal{C})$ .

Invariant "tail" layer (if necessary)

Let  $\Omega$  and  $\Omega'$  be domains,  $\mathfrak{G}$  a symmetry group over  $\Omega$ . Write  $\Omega' \subseteq \Omega$  if  $\Omega'$  can be considered a compact version of  $\Omega$ .

We define the following building blocks:

*Linear*  $\mathfrak{G}$ *-equivariant layer*  $B : \mathcal{X}(\Omega, \mathcal{C}) \to \mathcal{X}(\Omega', \mathcal{C}')$ , satisfying  $B(\mathfrak{g}, x) = \mathfrak{g}. B(x)$  for all  $\mathfrak{g} \in \mathfrak{G}$  and  $x \in \mathcal{X}(\Omega, \mathcal{C})$ .

**Activation function** 

*Nonlinearity*  $\sigma$  :  $C \rightarrow C'$  applied element-wise as  $(\sigma(x))(u) = \sigma(x(u))$ .

*Local pooling (coarsening)*  $P : \mathcal{X}(\Omega, \mathcal{C}) \to \mathcal{X}(\Omega', \mathcal{C})$ , such that  $\Omega' \subseteq \Omega$ .

 $\mathfrak{G}$ -invariant layer (global pooling)  $A : \mathfrak{X}(\Omega, \mathcal{C}) \to \mathcal{Y}$ , satisfying  $A(\mathfrak{g}, x) = A(x)$  for all  $\mathfrak{g} \in \mathfrak{G}$  and  $x \in \mathfrak{X}(\Omega, \mathcal{C})$ .

Let  $\Omega$  and  $\Omega'$  be domains,  $\mathfrak{G}$  a symmetry group over  $\Omega$ . Write  $\Omega' \subseteq \Omega$  if  $\Omega'$  can be considered a compact version of  $\Omega$ .

We define the following building blocks:

*Linear*  $\mathfrak{G}$ *-equivariant layer*  $B : \mathcal{X}(\Omega, \mathcal{C}) \to \mathcal{X}(\Omega', \mathcal{C}')$ , satisfying  $B(\mathfrak{g}, x) = \mathfrak{g}.B(x)$  for all  $\mathfrak{g} \in \mathfrak{G}$  and  $x \in \mathcal{X}(\Omega, \mathcal{C})$ .

*Nonlinearity*  $\sigma$  :  $C \rightarrow C'$  applied element-wise as  $(\sigma(x))(u) = \sigma(x(u))$ .

*Local pooling (coarsening)*  $P : \mathcal{X}(\Omega, \mathcal{C}) \to \mathcal{X}(\Omega', \mathcal{C})$ , such that  $\Omega' \subseteq \Omega$ .

**Coarsening layer** 

 $\mathfrak{G}$ -invariant layer (global pooling)  $A : \mathfrak{X}(\Omega, \mathcal{C}) \to \mathcal{Y}$ , satisfying  $A(\mathfrak{g}, x) = A(x)$  for all  $\mathfrak{g} \in \mathfrak{G}$  and  $x \in \mathfrak{X}(\Omega, \mathcal{C})$ .

#### The blueprint of Geometric Deep Learning



# *Popular architectures as instances of GDL blueprint*

**Architecture** CNN Spherical CNN Mesh CNN

GNN Deep Sets Transformer E(3) GNN

LSTM

**Domain**  $\Omega$ Grid Sphere / SO(3) Manifold Graph Set Complete Graph Geometric Graph

1D Grid

Symmetry Group **(5)** Translation Rotation SO(3) Isometry Iso( $\Omega$ ) / Gauge Symmetry SO(2) Permutation  $\Sigma_n$ Permutation  $\Sigma_n$ Permutation  $\Sigma_n$ Permutation  $\Sigma_n \times$ Euclidean E(3)Time warping

# Architectures of interest











**LSTMs** 

Time warping

**Perceptrons** Function regularity





Deep Sets / Transformers Permutation

**GNNs** Permutation

Intrinsic CNNs Isometry / Gauge choice ...now it's our turn to study geometry! ©

