GEOMETRIC DEEP LEARNING (**L65**)

Pietro Liò *University of Cambridge* Petar Veličković *Google DeepMind / University of Cambridge*

Lent Term 2024 *CST Part III / MPhil ACS / MPhil MLMI*

1. INTRODUCTION TO GROUPS AND REPRESENTATIONS

The fundamentals of capturing the regularity in nature

Petar Veličković

Learning in high dimensions

In general, learning functions in high dimensions is **intractable** Number of samples required grows *exponentially* with dimension

We can inject *assumptions* about **geometry** through *inductive biases* Restrict the functions to ones that *respect* the geometry. This can make the high-dimensional problem more tractable!

Some popular examples:

• **Image** data should be processed independently of **shifts**

We can inject *assumptions* about **geometry** through *inductive biases* Restrict the functions to ones that *respect* the geometry. This can make the high-dimensional problem more tractable!

Some popular examples:

- **Image** data should be processed independently of **shifts**
- **Spherical** data should be processed independently of **rotations**

We can inject *assumptions* about **geometry** through *inductive biases* Restrict the functions to ones that *respect* the geometry. This can make the high-dimensional problem more tractable!

Some popular examples:

- **Image** data should be processed independently of **shifts**
- **Spherical** data should be processed independently of **rotations**
- **Graph** data should be processed independently of **isomorphism**

We can inject *assumptions* about **geometry** through *inductive biases* Restrict the functions to ones that *respect* the geometry. This can make the high-dimensional problem more tractable!

Some popular examples:

- **Image** data should be processed independently of **shifts**
- **Spherical** data should be processed independently of **rotations**
- **Graph** data should be processed independently of **isomorphism**

We will now attempt to **formalise** this!

A roadmap for our formalisation

To be able to talk about geometry of *data*, we need to formalise *where* the data lives (*domain*) and how to *featurise* it (*signal*)

Once we understand data domains, we can then formalise *symmetries* of those domains (*groups*)

Equipped with groups, we need to formalise *how* they *transform* the data domains (*group actions*)

Deep learning concerns itself with *linear algebra*; we need to be able to talk about group actions as *matrix operations* (*representations*)

Using representations, we can formalise what it means for a deep learning model to *respect symmetries* (*invariance & equivariance*)

The space of signals on a geometric domain

A *signal* on Ω is a function $x : \Omega \rightarrow \mathcal{C}$, where:

- Ω is the domain (e.g. set of pixels/nodes/...)
- $\mathcal C$ is a vector space, whose dimensions are called *channels*

The space of C -valued signals on Ω is defined as $\mathcal{X}(\Omega,\mathcal{C}) = \{x : \Omega \to \mathcal{C}\}\$ We will often omit \mathcal{C} , and just write $\mathcal{X}(\Omega)$

Example: $n \times n$ *RGB image*

Vector space structure of signals

We can add signals and multiply by scalars:

 $(\alpha x + \beta y)(u) = \alpha x(u) + \beta y(u)$, where $\alpha, \beta \in \mathbb{R}$ and $u \in \Omega$

⟹ The space of signals is a *vector space*! (possibly *infinite dimensional*) Can also define an *inner product* on signals, given inner product \langle , \rangle_c

on C and a measure μ on Ω (\Rightarrow The space of signals is a *Hilbert space*!)

$$
\langle x, y \rangle = \int_{\Omega} \langle x(u), y(u) \rangle_{\mathcal{C}} \, \mathrm{d}\mu(u)
$$

Exercise: Verify that the above satisfies the inner product axioms

A **symmetry** of an object is a transformation of that object that leaves it unchanged

The symmetries of a triangle, as generated by 120-degree rotations R and flips F.

Symmetry group

A **symmetry** of an object is a transformation of that object that leaves it **unchanged**

Observe that this immediately defines some properties:

- The **identity** transformation is always a symmetry
- Given two symmetry transformations, their **composition** (doing one after the other) is also a symmetry
- Given any symmetry, it must be **invertible**
- Moreover, its **inverse** is also a symmetry

Collecting all these *axioms* together, we recover a standard mathematical object: the **group**

Abstract groups

A *group* is a set $\mathfrak G$ with a binary operation denoted gb satisfying the following properties:

- *Associativity:* $(g\mathfrak{h})\mathfrak{k} = g(\mathfrak{h}\mathfrak{k})$ for all $g, \mathfrak{h}, \mathfrak{k} \in \mathfrak{G}$
- *Identity*: there exists a unique $e \in \mathfrak{G}$ satisfying

 $ge = eq = q$

- *Inverse:* for each $g \in \mathfrak{G}$ there is a unique inverse $g^{-1} \in \mathfrak{G}$, such that $gg^{-1} = g^{-1}g = e$
- *Closure*: for every $g, b \in \mathfrak{G}$, we have $g b \in \mathfrak{G}$ *Rotational symmetries of the cube*

 $(group O_h)$

Symmetry groups, abstract groups & group actions

Symmetry group: a group of transformations $g : \Omega \to \Omega$ The group operation is *composition*

Symmetry groups, abstract groups & group actions

Symmetry group: a group of transformations $g : \Omega \to \Omega$ The group operation is *composition*

Abstract group: a set of elements together with a composition rule, satisfying the group axioms

(an abstract group does not directly tell us how to transform data!)

Symmetry groups, abstract groups & group actions

Symmetry group: a group of transformations $g : \Omega \to \Omega$ The group operation is *composition*

Abstract group: a set of elements together with a composition rule, satisfying the group axioms

Group action: a map $\mathfrak{G} \times \Omega \to \Omega$ (denoted $(g, u) \mapsto gu$) such that $g(bu) = (ab)u$ $eu = u$

e.g.: Euclidean 2D motions $\mathfrak{G} = \mathbb{R}^3$ (angle + translation) acting on $\Omega = \mathbb{R}^2$: $(\theta, t_x, t_y)(x, y) \mapsto (x \cos \theta + y \sin \theta + t_x, x \sin \theta + y \cos \theta + t_y)$ **Exercise:** Verify this satisfies the group action axioms

Symmetries of Ω *acting on signals* $\mathcal{X}(\Omega)$

Given an action of $\mathfrak G$ on Ω , we automatically obtain an action of $\mathfrak G$ on the space of signals $\mathcal{X}(\Omega)$:

Linearity of the group action

If the signals support a vector space, such a group action on signals $(g x)(u) = x(g^{-1}u)$

is *linear*!

Linearity of the group action

If the signals support a vector space, such a group action on signals $(g x)(u) = x(g^{-1}u)$

is *linear*!

This is *excellent* news for us, as deep learning is basically *linear algebra* And we will be able to describe group actions as *matrix multiplication*!

For the time being, we will assume our domain is *discrete* and *finite* That is, that we can represent our domain using a matrix $X \in \mathbb{R}^{|\Omega| \times k}$

Group representations

A real representation of $\mathfrak G$ on a *finite vector space* $\mathcal X$ is a *map* $\rho_{\mathcal X} : \mathfrak G \to \mathbb R^{n \times n}$, assigning to each element $g \in \mathfrak{G}$ an *invertible matrix* $\rho_X(g)$, and satisfying $\rho_{\chi}(\mathfrak{g}\mathfrak{h}) = \rho_{\chi}(\mathfrak{g})\rho_{\chi}(\mathfrak{h}), \qquad \forall \mathfrak{g}, \mathfrak{h} \in \mathfrak{G}$

Group representations

A real representation of $\mathfrak G$ on a *finite vector space* $\mathcal X$ is a *map* $\rho_{\mathcal X} : \mathfrak G \to \mathbb R^{n \times n}$, assigning to each element $g \in \mathfrak{G}$ an *invertible matrix* $\rho_X(g)$, and satisfying $\rho_{\Upsilon}(\mathfrak{g}\mathfrak{h}) = \rho_{\Upsilon}(\mathfrak{g})\rho_{\Upsilon}(\mathfrak{h}), \qquad \forall \mathfrak{g}, \mathfrak{h} \in \mathfrak{G}$

The dimensionality of the matrix produced by ρ_X may depend on many factors, such as the size of the corresponding Ω

 ρ_X does *not* need to assign *different* matrices to *different* elements of $\mathfrak G$ (if it does, then it is a *faithful representation*)

Representations can be easily generalised to *infinite* spaces---the map $\rho_{\mathcal{X}} : \mathfrak{G} \to (\mathcal{X}(\Omega) \to \mathcal{X}(\Omega))$ would output an *invertible linear function* (strictly speaking, $\rho_X : \mathfrak{G} \to GL(X)$, where $GL(X)$ is the *general linear group* over X)

Group representations

A real representation of $\mathfrak G$ on a *finite vector space* $\mathfrak X$ is a *map* $\rho_{\mathfrak X} : \mathfrak G \to \mathbb R^{n \times n}$, assigning to each element $g \in \mathfrak{G}$ an *invertible matrix* $\rho_X(g)$, and satisfying $\rho_{\chi}(\mathrm{g}\mathrm{h}) = \rho_{\chi}(\mathrm{g})\rho_{\chi}(\mathrm{h}), \qquad \forall \mathrm{g}, \mathrm{h} \in \mathfrak{G}$

Example:

- The group of 1D (circular) shifts, $\mathfrak{G} = (\mathbb{Z}, +)$
- The domain $\Omega = \mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$ (e.g. short audio signal)
- The action of $g = n$ on $u \in \Omega$: $(n, u) \mapsto n + u \pmod{5}$
- The representation on $\mathcal{X}(\Omega)$:

$$
\rho_X(n) = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}^n \qquad \qquad \rho_X(1) \qquad \qquad \equiv
$$

Exercise: Derive the representation for the group of *90-degree rotations* on 3x3 grids

Group invariance

We can now *formally* describe how to *exploit* the symmetries in $6!$!

Group invariance

We can now *formally* describe how to *exploit* the symmetries in $\mathfrak{G}!$

A function $f : \mathcal{X}(\Omega) \to \mathcal{Y}$ is G-invariant if $f(\rho_{\mathcal{X}}(g)x) = f(x)$ for all $g \in \mathfrak{G}$, i.e., its output is unaffected by the group action on the input.

Group invariance

We can now *formally* describe how to *exploit* the symmetries in $\mathfrak{G}!$

A function $f : \mathcal{X}(\Omega) \to \mathcal{Y}$ is G-invariant if $f(\rho_{\mathcal{X}}(g)x) = f(x)$ for all 9 ∈ 8, i.e., its output is unaffected by the group action on the input.

e.g. **image classification**: output class won't depend on image **shifts**

$$
f\left(\begin{array}{c}\n\ast \\
\hline\np_{x(g)x}\n\end{array}\right) = f\left(\begin{array}{c}\n\ast \\
\hline\nx\n\end{array}\right) = \mathbf{\tilde{m}}_x
$$

Orbits and equivalence relations

 $O_r = \{ ax \mid x \in \mathcal{X}, g \in \mathfrak{G} \}$

\$-equivalence $x \sim_{\mathfrak{G}} y \Longleftrightarrow \exists g \in \mathfrak{G} : gx = y$

Satisfies the axioms of an equivalence relation:

- 1. Reflexivity: $x \sim_{\mathfrak{G}} x$
	- (Because **6** contains the identity)
- 2. Transitivity: $x \sim_{\mathfrak{G}} y \wedge y \sim_{\mathfrak{G}} z \Leftrightarrow x \sim_{\mathfrak{G}} z$
	- (Because $\mathfrak G$ is closed under composition)
- 3. Symmetry: $x \sim_{\mathfrak{G}} y \Leftrightarrow y \sim_{\mathfrak{G}} x$
	- (Because $\mathfrak G$ is closed under inverses)

#*-invariant representations*

The problem with invariance

Invariance is suitable when we need a *single* output over the *entire* domain. What if we need an output in *each* domain element?

Also, even if a single output is OK, making the intermediate representations invariant may lose *critical* information:

The *relative pose* of object parts contains critical information (Hinton *et al.*, ICANN'11)

Group equivariance

We proceed to define a more *fine-grained* notion of regularity:

A function $f : \mathcal{X}(\Omega) \to \mathcal{Z}(\Omega)$ is G-equivariant if, for all $g \in \mathfrak{G}$, $f(\rho_X(g)x) = \rho_Z(g)f(x)$, i.e., applying a group action on the input affects the output in the same way.

Group equivariance

We proceed to define a more *fine-grained* notion of regularity:

A function $f : \mathcal{X}(\Omega) \to \mathcal{Z}(\Omega)$ is G-equivariant if, for all $g \in \mathfrak{G}$, $f(\rho_X(g)x) = \rho_Z(g)f(x)$, i.e., applying a group action on the input affects the output in the same way.

e.g. **image segmentation**: segmentation mask must **follow** any shifts in the input

Note that invariance is a *special case* of equivariance (for which ρ_Z ?)

Equivariance as symmetry-consistent generalisation

Equivariance as symmetry-consistent generalisation

Let Ω and $Ω'$ be domains, $\mathfrak G$ a symmetry group over $Ω$. Write $\Omega' \subseteq \Omega$ if Ω' can be considered a compact version of Ω .

We define the following building blocks:

Linear \mathfrak{G} -equivariant *layer* $B : \mathcal{X}(\Omega, \mathcal{C}) \to \mathcal{X}(\Omega', \mathcal{C}'),$ satisfying $B(g, x) = g, B(x)$ for all $g \in \mathfrak{G}$ and $x \in \mathcal{X}(\Omega, \mathcal{C})$.

Nonlinearity $\sigma : C \to C'$ applied element-wise as $(\sigma(x))(u) = \sigma(x(u))$.

Local pooling (*coarsening*) $P : \mathcal{X}(\Omega, C) \to \mathcal{X}(\Omega', C)$, such that $\Omega' \subseteq \Omega$.

 $\mathfrak{G}\text{-}invariant\ layer\ (global\ pooling) A: \mathcal{X}(\Omega,\mathcal{C}) \to \mathcal{Y},$ satisfying $A(g, x) = A(x)$ for all $g \in \mathfrak{G}$ and $x \in \mathcal{X}(\Omega, \mathcal{C})$.

Let $Ω$ and $Ω'$ be domains, $\mathfrak G$ a symmetry group over $Ω$. Write $\Omega' \subseteq \Omega$ if Ω' can be considered a compact version of Ω .

We define the following building blocks:

Linear \mathfrak{G} -equivariant *layer* $B : \mathcal{X}(\Omega, \mathcal{C}) \to \mathcal{X}(\Omega', \mathcal{C}'),$ satisfying $B(g, x) = g, B(x)$ for all $g \in \mathfrak{G}$ and $x \in \mathcal{X}(\Omega, \mathcal{C})$.

Linear **equivariant layer**

Nonlinearity $\sigma : C \to C'$ applied element-wise as $(\sigma(x))(u) = \sigma(x(u))$.

Local pooling (*coarsening*) $P : \mathcal{X}(\Omega, C) \to \mathcal{X}(\Omega', C)$, such that $\Omega' \subseteq \Omega$.

 $\mathfrak{G}-i$ *nvariant layer* (global pooling) $A : \mathcal{X}(\Omega, \mathcal{C}) \rightarrow \mathcal{Y}$, satisfying $A(g, x) = A(x)$ for all $g \in \mathfrak{G}$ and $x \in \mathcal{X}(\Omega, \mathcal{C})$.

Invariant "tail" layer (if necessary)

Let Ω and $Ω'$ be domains, $\mathfrak G$ a symmetry group over $Ω$. Write $\Omega' \subseteq \Omega$ if Ω' can be considered a compact version of Ω .

We define the following building blocks:

Linear \mathfrak{G} -equivariant *layer* $B : \mathcal{X}(\Omega, \mathcal{C}) \to \mathcal{X}(\Omega', \mathcal{C}'),$ satisfying $B(g, x) = g, B(x)$ for all $g \in \mathfrak{G}$ and $x \in \mathcal{X}(\Omega, \mathcal{C})$.

Activation function

Nonlinearity $\sigma : C \to C'$ applied element-wise as $(\sigma(x))(u) = \sigma(x(u))$.

Local pooling (*coarsening*) $P : \mathcal{X}(\Omega, C) \to \mathcal{X}(\Omega', C)$, such that $\Omega' \subseteq \Omega$.

 $\mathfrak{G}\text{-}invariant\ layer\ (global\ pooling) A: \mathcal{X}(\Omega,\mathcal{C}) \to \mathcal{Y},$ satisfying $A(g, x) = A(x)$ for all $g \in \mathfrak{G}$ and $x \in \mathcal{X}(\Omega, \mathcal{C})$.

Let Ω and $Ω'$ be domains, $\mathfrak G$ a symmetry group over $Ω$. Write $\Omega' \subseteq \Omega$ if Ω' can be considered a compact version of Ω .

We define the following building blocks:

Linear \mathfrak{G} -equivariant *layer* $B : \mathcal{X}(\Omega, \mathcal{C}) \to \mathcal{X}(\Omega', \mathcal{C}'),$ satisfying $B(g, x) = g, B(x)$ for all $g \in \mathfrak{G}$ and $x \in \mathcal{X}(\Omega, \mathcal{C})$.

Nonlinearity $\sigma : C \to C'$ applied element-wise as $(\sigma(x))(u) = \sigma(x(u))$.

Local pooling (*coarsening*) $P : \mathcal{X}(\Omega, C) \to \mathcal{X}(\Omega', C)$, such that $\Omega' \subseteq \Omega$.

Coarsening layer

 $\mathfrak{G}-i$ *nvariant layer* (global pooling) $A : \mathcal{X}(\Omega, \mathcal{C}) \rightarrow \mathcal{Y}$, satisfying $A(g, x) = A(x)$ for all $g \in \mathfrak{G}$ and $x \in \mathcal{X}(\Omega, \mathcal{C})$.

The blueprint of Geometric Deep Learning

Popular architectures as instances of GDL blueprint

CNN Grid Translation *Spherical CNN* Sphere / SO(3) Rotation SO(3) GNN Graph Gr ρ *Deep Sets* Set Permutation Σ_n *Transformer* Complete Graph Permutation Σ_n

Architecture Domain Ω **Symmetry Group** 8 *Mesh* CNN Manifold Isometry Iso(Ω) / Gauge Symmetry SO(2) *E(3) GNN* Geometric Graph Permutation $\Sigma_n \times$ Euclidean $E(3)$ *LSTM* 1D Grid Time warping

Architectures of interest

Perceptrons

LSTMs Time warping

Group-CNNs Global groups

Deep Sets / Transformers Permutation

GNNs Permutation

Intrinsic CNNs Isometry / Gauge choice *…now it's our turn to study* $geometry!$

