
GEOMETRIC DEEP LEARNING
(L65)

Pietro Liò
Petar Veličković

University of Cambridge
Google DeepMind / University of Cambridge

Lent Term 2025
CST Part III / MPhil ACS / MPhil MLMI

4. GRAPH NEURAL NETWORKS

Permutation-equivariant learning on graphs

Petar Veličković

In the last lecture, we studied how to build neural nets over sets
Now we augment the set of nodes with edges between them
That is, we consider graphs 𝒢 = (𝒱, ℰ) where ℰ ⊆ 𝒱	×	𝒱

We can represent these edges in an adjacency matrix, 𝐀, such that:

𝑎!" = -1, 𝑢, 𝑣 ∈ ℰ
0, 𝑢, 𝑣 ∉ ℰ

Note that the edges are now part of the domain!

Further additions, e.g. edge features, are possible but ignored for now

Our main desiderata (permutation {in,equi}variance) still hold!

Learning on graphs

What’s changed?

What’s changed?

Main difference: permutations now also accordingly act on the edges

We need to appropriately permute both rows and columns of 𝐀
When applying a permutation matrix 𝐏, this amounts to 𝐏𝐀𝐏#

We arrive at updated definitions of suitable functions over graphs:

Invariance: 𝑓 𝐏𝐗, 𝐏𝐀𝐏! = 𝑓 𝐗, 𝐀

Equivariance: 𝐅 𝐏𝐗, 𝐏𝐀𝐏! = 𝐏𝐅(𝐗, 𝐀)

Permutation invariance and equivariance on graphs

On sets, we enforced locality by transforming every node in isolation

Graphs give us a broader context: a node’s neighbourhood
For a node 𝑢, its (1-hop) neighbourhood, 𝒩!, is commonly defined as:

𝒩! = {𝑣 ∶ 𝑢, 𝑣 ∈ ℰ	 ∨ 𝑣, 𝑢 ∈ ℰ)}

Accordingly, we can extract neighbourhood features, 𝐗𝒩! , like so:

𝐗𝒩! = {{	𝐱" ∶ 𝑣 ∈ 𝒩!	}}

and define a local function, 𝑓(𝐱!, 𝐗𝒩!), operating over them.

(𝐗𝒩! is a multiset; cf. {{	…	}} notation)

Locality on graphs: Neighbourhoods

Now we can construct permutation equivariant functions, 𝐅(𝐗, 𝐀), by
appropriately applying the local function, 𝑓, over all neighbourhoods:

𝐅 𝐗, 𝐀 =

− 𝑓(𝐱!, 𝐗𝒩!) −
− 𝑓(𝐱#, 𝐗𝒩") −

⋮
− 𝑓(𝐱$, 𝐗𝒩#) −

To ensure equivariance, it is sufficient if 𝑓 does not depend on the
order of the nodes in 𝐗𝒩! (i.e. if it is permutation invariant in 𝐗𝒩!).
Exercise: Prove this!

Recipe for graph neural networks

Recipe for graph neural networks, visualised

General blueprint for learning on graphs

General blueprint for learning on graphs

General blueprint for learning on graphs

General blueprint for learning on graphs

General blueprint for learning on graphs

We build permutation equivariant functions 𝐅(𝐗, 𝐀)	on graphs by
shared application of a local permutation-invariant 𝑓(𝐱!, 𝐗𝒩!)

Common lingo:
𝐅 is a “GNN layer”
𝑓 is “diffusion” / “propagation” / “message passing”

But how do we implement 𝑓?
Very intense area of research!

What’s in a GNN layer?

We build permutation equivariant functions 𝐅(𝐗, 𝐀)	on graphs by
shared application of a local permutation-invariant 𝑓(𝐱!, 𝐗𝒩!)

Common lingo:
𝐅 is a “GNN layer”
𝑓 is “diffusion” / “propagation” / “message passing”

But how do we implement 𝑓?
Very intense area of research!
Fortunately, almost all of them can be classified across three “flavours”

What’s in a GNN layer?

As 𝑓 is supposed to be a local and permutation-invariant function over
the neighbourhood features 𝐗𝒩! , it effectively needs to be a neural
network over sets, potentially conditioned by 𝐱!.

Recalling the Deep Sets model and its universality, we can hence
assume the following generic equation (with added conditioning):

𝑓 𝐱!, 𝐗𝒩! = 𝜙 𝐱!, ?
"∈𝒩!

𝜓 𝐱!, 𝐱"

Note that this induces several free variables (𝒩!, ⨁, 𝜙, 𝜓)
We will primarily focus on the parametric ones in today’s lecture!
(NB. We (for now) assume our GNN does not modify the graph structure!)

Preliminaries

⨁

The three “flavours” of GNN layers

𝐡" = 𝜙 𝐱", +
#∈𝒩!

𝑐"#𝜓 𝐱# 𝐡" = 𝜙 𝐱", +
#∈𝒩!

𝑎 𝐱", 𝐱# 𝜓 𝐱# 𝐡" = 𝜙 𝐱", +
#∈𝒩!

𝜓 𝐱", 𝐱#⨁ ⨁ ⨁

For much of this lecture, we will be explicitly diving into the specific
instantiations of the three flavours and implementing them in practice

This is designed with orientation in mind, while also telling a few
chronological stories of GNN development + some of the lessons learnt

It is by no means a complete account!

Rather, it is only meant to give you context to navigate and categorise
the overwhelming emerging research developments in GNNs

Important disclaimer

You will often see the appearance of functions 𝜓 and 𝜙 in this lecture

They are meant to be neural networks operating over flat vector inputs

The simplest example is a fully-connected MLP layer, e.g.:

𝜓 𝐱 = 𝜎 𝐖𝐱 + 𝐛 	 𝜓 𝐱, 𝐲 = 𝜎 𝐖𝐱 + 𝐔𝐲 + 𝐛

𝐖, 𝐔, and 𝐛 are weights and biases, and 𝜎 is an activation function
(stacking more layers, e.g. 𝜓 𝐱, 𝐲 = 𝜎" 𝐖"σ# 𝐖#𝐱 + 𝐔𝐲 + 𝐛# + 𝐛" is possible, and occasionally necessary)

The parameters are usually trainable via stochastic gradient descent

A note on notation

Features of neighbours aggregated with fixed weights, 𝑐!"

Usually, weights depend directly on 𝐀
• ChebyNet (Defferrard et al., NeurIPS’16)
• GCN (Kipf & Welling, ICLR’17)
• SGC (Wu et al., ICML’19)

Useful for homophilous graphs
(when edges encode label similarity)
Highly scalable
Most industrial GNN applications currently live here

Convolutional GNN

𝐡! = 𝜙 𝐱!, ?
"∈𝒩!

𝑐!"𝜓 𝐱"⨁

What could be a good coefficient 𝑐!"?

If we don’t know anything about the task, perhaps a constant?
Let 𝑐!" = 1, and set ⊕	= ∑.

Conveniently, we can now represent the update rule in matrix form!
𝐇 = 𝚽 𝐗,𝐀𝚿 𝐗

(Here, 𝚽 and 𝚿 distribute the computation of 𝜙 and 𝜓 across all nodes)

To make the matrix analogy even clearer: let 𝜓 be a linear layer, and 𝜙
a (residual) sum followed by an activation function, 𝜎:

𝐇 = 𝜎 𝐀𝐗𝐖& + 𝐗𝐖'

Setting the convolutional weights

We need to resolve a key issue: explosion of the features
For most graphs, 𝐀𝐗 > 𝐗

Instead of taking sums, let’s take the average! i.e. 𝑐!" =
&
(!

(Other options, such as layer normalisation on the output node features, have seen popularity recently)
The matrix form still works:

𝐇 = 𝜎 𝐃)&𝐀𝐗𝐖& + 𝐗𝐖'

where	𝐃 is the degree matrix; 𝑑!! = 𝑑!, and zero otherwise.

Note: this operation is related to the random-walk Laplacian!

Stabilising the operator

Generally, more interesting dynamics emerge with symmetric

normalisation; that is, 𝑐!" =
&

(!("
. The matrix form now reads:

𝐇 = 𝜎 𝐃)
&
*𝐀𝐃)

&
*𝐗𝐖& + 𝐗𝐖'

Note: this operation is related to the symmetric normalised Laplacian!

In fact, we are two steps away from the most popular GNN layer!

Motivated by the very easy-to-overfit datasets of its time, let’s simplify
this layer even further.

Symmetric normalisation

First observation: halve the number of parameters if 𝐖' = 𝐖& = 𝐖

𝐇 = 𝜎 𝐃)
&
*𝐀𝐃)

&
*𝐗𝐖+ 𝐗𝐖 = 𝜎 𝐈 + 𝐃)

&
*𝐀𝐃)

&
* 𝐗𝐖

Second observation: this operator now has largest eigenvalue 2, which
can lead to exploding parameters again. Hence, we renormalise it:

𝐇 = 𝜎 S𝐃)
&
*S𝐀S𝐃)

&
*𝐗𝐖

Where S𝐀 = 𝐀 + 𝐈, and S𝐃 is its corresponding degree matrix.
(N.B. this step is equivalent to adding 𝑢 into 𝒩$ and ignoring the residual term in 𝜙)

Graph convolutional network (GCN; Kipf & Welling, ICLR’17)

Graph convolutional network

While GCNs are simple, they already encode a strong inductive bias!

Randomly initialised GCN on Zachary’s karate club network:

If you are likely to share labels with a neighbour…
Averaging your neighbours can be a powerful predictor!

Empirical performance of GCNs

Do we even need deep learning for many graph datasets?
Let’s try to strip the parameters and nonlinearity from a GCN…

After 𝐾 steps, the node features become S𝐃)
#
$S𝐀S𝐃)

#
$
+
𝐗

Now, e.g., to classify nodes, learn a simple logistic regressor:

 softmax S𝐃)
#
$S𝐀S𝐃)

#
$
+
𝐗𝐖

Yielding the simplified graph convolution (SGC; Wu et al., ICML’19)
Near state-of-the-art on many tasks of interest; very efficient to train!

Just how powerful is aggregation?

ss

SGC vs. GCN

We can represent conv-GNNs using sparse matrix multiplications!
(For choices of nonparametric ⊕ other than ∑, this idea still holds; just over a different semiring)

This gives them scalability benefits compared to other GNNs

It also allows us to easily aggregate over multiple hops in one layer!

For example:

𝐇 = 𝜎 ?
,-'

+

𝐀,𝐗𝐖,

will combine information from the 𝐾-hop neighbourhood!
(N.B. this layer still fits the conv-GNN framework; we need only re-define 𝒩$ and set 𝑐$% accordingly)

Multi-hop convolutional GNNs via matrix multiplication

A popular multi-hop conv-GNN from Defferrard et al. (NeurIPS’16):

𝐇 = 𝜎 ?
,-'

+

𝛼,
2

𝜆./0
𝐋12. 	− 𝐈	

,
𝐗𝐖,

where 𝐋12. = 𝐈 − 𝐃)
#
$𝐀𝐃)

#
$ is the symmetric graph Laplacian

and 𝛼, is the order-𝑘 coefficient of its Chebyshev polynomial
(𝜆&'(is the largest eigenvalue of 𝐋; the "

)!"#
 factor is designed to protect against exploding outputs)

N.B. GCN can be interpreted as a ChebyNet with 𝐾 = 1, 𝜆./0 ≈ 2

Chebyshev polynomials are convenient as they offer a sparse and
scalable multi-hop method, which is quite performant in practice

Chebyshev Networks

One motivation for considering stronger GNNs comes from images
What happens when a ChebyNet is applied to an image graph?

Assume every pixel connected to its four immediate neighbours
Then the weights of a 3 x 3 conv kernel around a pixel would look like:

𝑤* 𝑤& 𝑤*
𝑤& 𝑤' 𝑤&
𝑤* 𝑤& 𝑤*

(to see why, note that images are regular graphs: 𝑐$% is a constant)

Such filters are radial, and are fundamentally limited in expressivity
ChebyNets (hence GCNs also!) cannot represent all image CNNs.
(See Huszár, How powerful are Graph Convolutions?)

To what extent are ChebyNets convolution-like?

Features of neighbours aggregated with implicit weights (attention)

Attention weights computed as 𝛼!" = 𝑎(𝐱!, 𝐱")
• MoNet (Monti et al., CVPR’17)
• GAT (Veličković et al., ICLR’18)
• GATv2 (Brody et al., ICLR’22)

Useful as ”middle ground”
w.r.t. capacity, scale, interpretability
Edges need not encode homophily
But still computing only a scalar per edge

Attentional GNN

𝐡! = 𝜙 𝐱!, ?
"∈𝒩!

𝑎 𝐱!, 𝐱" 𝜓 𝐱"⨁

The need for general-purpose anisotropic aggregation was detected by
the mixture model CNN (MoNet; Monti et al., CVPR’17)

MoNet approaches this topic from the point of view of meshes:

𝐡! = 𝜎 ?
"∈𝒩!

𝑤 𝐞 𝑢, 𝑣 𝐖𝐱"

Mixture model CNNs

𝐞 ∶ 𝒱* → ℝ, is a pseudo-coordinate function
𝑤 ∶ ℝ, → ℝ is a weighting function

𝐡! = 𝜎 ?
"∈𝒩!

𝑤 𝐞 𝑢, 𝑣 𝐖𝐱"

It is clear to see how all isotropic GNNs fit within this framework.
For example, we can recover GCNs by setting:

𝐞 𝑢, 𝑣 = 𝑑!, 𝑑" # 𝑤 𝐞 = 1 − 1 − &
3#

1 − 1 − &
3$

And many other standard anisotropic methods, such as image CNNs
(which GCNs / ChebyNets could not!)

𝐞 extracts a vector-based representation of the (𝑢, 𝑣)	edge
𝑤 converts this vector into an aggregation coefficient

MoNet is very general

𝐞 ∶ 𝒱* → ℝ, is a pseudo-coordinate function
𝑤 ∶ ℝ, → ℝ is a weighting function

𝐡! = 𝜎 ?
"∈𝒩!

𝑤 𝐞 𝑢, 𝑣 𝐖𝐱"

While powerful, MoNet’s motivation still came from the mesh domain,
where nodes are expected to have coordinates

What does the MoNet paper do for graph inputs?

What is missing?

𝐞 ∶ 𝒱* → ℝ, is a pseudo-coordinate function
𝑤 ∶ ℝ, → ℝ is a weighting function

𝐡! = 𝜎 ?
"∈𝒩!

𝑤 𝐞 𝑢, 𝑣 𝐖𝐱"

For graphs, the MoNet paper instead uses only simple structure in 𝐞:

𝐞 𝑢, 𝑣 = tanh 𝐀 &
(!
, &
("
	
#
+ 𝐛

And therefore, still behaved isotropically for regular graphs / images!

FYI: the weighting function MoNet used was a Gaussian kernel: 𝑤 𝐞 = exp − #
"
𝐞 − 𝛍 *𝚺+# 𝐞 − 𝛍

What is missing?

𝐀, 𝐛 are learnable

𝐞 ∶ 𝒱* → ℝ, is a pseudo-coordinate function
𝑤 ∶ ℝ, → ℝ is a weighting function

Our aim is to generalise CNNs to graphs

Allow different neighbours to be weighted differently
even if they are structurally identical!

MoNet’s generalised weighting functions are sufficient to support this

BUT the input to the weighting function was thus far always structural
Therefore, hopeless when nodes are structurally identical

To achieve this, a paradigm shift was needed
Where else can we find information to disambiguate the neighbours?

Towards a truly convolutional GNN

The nodes’ feature vectors, 𝐱!, may also hold identifying information

Representing features as coordinates allows us to move away from the
mesh-based angle and into the realm of attention; deciding how much
to attend to each neighbour based on its content
The mesh angle will make a very important comeback towards the end of the course J

Embodied by graph attention networks (GAT; Veličković et al. (ICLR’18))

𝐡! = 𝜎 ?
"∈𝒩!

𝛼 𝐱!, 𝐱" 𝐖𝐱"

Where 𝛼 ∶ ℝ,	×	ℝ, → ℝ is the attention mechanism
in the MoNet framework, set 𝐞 𝑢, 𝑣 = 𝐱$?𝐱%.

Features-as-coordinates: graph attention networks

With this change in thinking, we now have satisfied all of the
requirements for a GNN that generalises image CNNs
(local, computationally efficient, anisotropic, …)

The GAT design comes with a few additional perks:
• Supports arbitrary weighted aggregation
• Still computing only one scalar per edge
• Potential for interpretability and structure discovery: attention function

computes a direct measure of affinity between neighbours (careful!)

Accordingly, GATs have seen popularity in scientific applications
Generally seen as a “sweet spot” between scalability and expressivity
(This also relates to the success of the Transformer architecture; a link we will explore in future lectures)

Graph attention networks

Selection of GAT applications

The GAT paper is, in principle, not enforcing a particular function 𝛼
Most generally, it should be a deep MLP

But in practice, to prevent overfitting on the (now deprecated) datasets
of the time, the function 𝛼 had to be substantially weakened

Therefore, the GAT paper implements linear attention:

𝑒 𝐱!, 𝐱" = LeakyReLU 𝐚# 𝐱!q𝐱" ; 	 𝛼 𝐱!, 𝐱" =
exp 𝑒 𝐱!, 𝐱"

∑4∈𝒩! exp 𝑒 𝐱!, 𝐱4

Occasionally, the use of linear attention is synonymous with “GAT”

Which attention mechanism to use?

GAT linear attention

𝑒 𝐱!, 𝐱" = LeakyReLU 𝐚# 𝐱!q𝐱"

	

𝛼 𝐱!, 𝐱" =
exp 𝑒 𝐱!, 𝐱"

∑!∈𝒩 4 exp 𝑒 𝐱!, 𝐱4

Note: the original GAT paper (right) performed an
additional multiplication of node features with 𝐖.
This addition does not increase expressive power!

However, in recent years, the field has moved on from simple
benchmarks where nonlinear attention would overfit

Specifically, a key issue of linear attention is that it is static
There always exists one node, 𝑓 ∈ 𝒱, whose features 𝐱5 maximise
𝑒 𝐱!, 𝐱5 , regardless of the receiver features 𝐱!!

This node is exactly the node that optimizes 𝐚#𝐱5
The features of the receiver only provide an additive factor of	𝐚#𝐱! so
they cannot affect the order of the coefficients

Hidden assumption: there exists a global ranking of node “influences”
Does not always hold!

Static attention

The static attention issue went unnoticed until quite recently!

It was both identified and patched by Brody et al. (ICLR’22)
They propose the GATv2 attention mechanism, as follows:

𝑒 𝐱!, 𝐱" = 𝐚#LeakyReLU 𝐖 𝐱!q𝐱"
(the softmax is still applied to the coefficients within 𝛼 𝐱$, 𝐱%)

Since this is effectively a two-layer MLP, it is a universal approximator
Hence it can learn any attention function, including dynamic ones

Conveniently, Brody et al. also prove that dot-product attention (as seen
in Transformers) is not always able to compute dynamic attention

Dynamic attention: GATv2

The need for dynamic attention: Dictionary Lookup

Static and dynamic attention

Comparing GAT and GATv2 highlights also a storage complexity aspect

Recall the attention mechanisms:

GAT: 𝑒 𝐱!, 𝐱" = LeakyReLU 𝐚# 𝐱!q𝐱"
GATv2: 𝑒 𝐱!, 𝐱" = 𝐚#LeakyReLU 𝐖 𝐱!q𝐱"

While they seem to use the same operations in a different order,
GATv2 requires explicitly materialising the concatenation 𝐱!q𝐱"

Therefore, storage complexity proportional to the number of edges is
incurred; often, this is significantly larger than the number of nodes

Exercise: Implement GAT attention with 𝑂(𝒱) storage complexity

Note on GAT scalability

All formulations of attentional GNNs so far only used one learnable
attention mechanism; learns one mode of interaction!

It is beneficial to consider multiple modes of interaction at once:
deploy multi-head attention (Vaswani et al., NeurIPS’17)

𝐡! = ?
,-&

+

𝜎 ?
"∈𝒩!

𝛼, 𝐱!, 𝐱" 𝐖,𝐱"

This allows GATs to learn multiple modes of interaction
(and ameliorates the static attention issue to an extent)

Multi-head attention

‖

Analysing the attention heads

DeepInf (Qiu et al., KDD’18)

The first qualitative study that
interprets a GAT model

Task is to classify whether node 𝑣 will
perform some action in a social
network (e.g. liking/retweeting)

Different heads learn to focus on
different aspects of 𝑣’s neighbourhood

Compute arbitrary vectors (messages) to be sent across edges

Messages computed as 𝐦!" = 𝜓(𝐱!, 𝐱")
• Interaction Nets (Battaglia et al., NeurIPS’16)
• MPNN (Gilmer et al., ICML’17)
• GraphNets (Battaglia et al., 2018)

Most generic GNN layer
Edges give “recipe” for passing data
May have scalability or learnability issues
Ideal for computational chemistry, reasoning and simulation tasks

Message-passing GNN

𝐡! = 𝜙 𝐱!, ?
"∈𝒩!

𝜓 𝐱!, 𝐱"⨁

On our journey through convolutional and attentional GNNs, we have
gradually increased expressive power (at the expense of scalability)

The latest GATv2 model, in fact, materialises vectors per edge

At this point, a complex process is encoded over the edges, but it is
still used only to determine a weighted combination of the neighbours

The ”next step” in generality:
the quantities being combined themselves depend on both nodes
The receiver can explicitly condition what it receives from the sender!

This leads us to message-passing GNNs

Towards the most expressive GNN

The need for arbitrary vector-based messages appeared early in physics

It allows us to easily encode various kinds of interactions (e.g. forces)
between the nodes in the graph

Eponymous interaction network of Battaglia et al. (NeurIPS’16)

Apply GNNs to predict future trajectories of n-body systems,
bouncing balls, and strings

Physics, especially simulations, remains one of the key domains that
stimulate the development of expressive GNNs
(We will revisit physics simulations from various aspects throughout the course)

Interaction networks

Interaction networks in action

Another area that drives modern GNN design is chemistry
Molecules lend themselves to a graph representation quite naturally
Applications in quantum chemistry, drug design, material science…

In fact, it can be argued that computational chemists invented the first
general-purpose GNNs!
• ChemNet (Kireev et al., CICS’95)
• Baskin et al. (CICS’97)
• Molecular Graph Networks (Merkwirth and Lengauer, CIM’05)

This drive continued well into the 2010s:
• Molecular fingerprinting GNNs (Duvenaud et al., NeurIPS’15)
• GNNs for quantum chemistry (Gilmer et al., ICML’17)

Computational chemistry

In this work, Gilmer et al. tackle head-on the task of quantum property
predictions from small-molecule datasets (such as QM9)

Their target: replace expensive DFT
simulations with learnt GNN models

Contribution is also theoretical:
Categorise all existing GNNs at
the time into the MPNN framework

This framework was generic enough to reach chemical accuracy on 11
out of 13 of the tasks within QM9, after a thorough architecture scan.

Neural message passing for quantum chemistry

Especially here, graphs can convey rich information at all granularities

We previously ignored non-node data for simplicity

Now we will assume the following possible set of features:
• Node features, 𝐱! ∈ ℝ, (e.g. atom type, charge, nb. of hydrogens)

General attributed graphs

Especially here, graphs can convey rich information at all granularities

We previously ignored non-node data for simplicity

Now we will assume the following possible set of features:
• Node features, 𝐱! ∈ ℝ,
• Edge features, 𝐱!" ∈ ℝ6 (e.g. bond type, is in a ring?)

General attributed graphs

Especially here, graphs can convey rich information at all granularities

We previously ignored non-node data for simplicity

Now we will assume the following possible set of features:
• Node features, 𝐱! ∈ ℝ,
• Edge features, 𝐱!" ∈ ℝ6
• Graph features, 𝐱𝒢 ∈ ℝ8 (e.g. molecular weight, fingerprints)

General attributed graphs

Especially here, graphs can convey rich information at all granularities

We previously ignored non-node data for simplicity

Now we will assume the following possible set of features:
• Node features, 𝐱! ∈ ℝ,
• Edge features, 𝐱!" ∈ ℝ6
• Graph features, 𝐱𝒢 ∈ ℝ8
Analogously defining latents 𝐡!, 𝐡!", 𝐡𝒢

It is possible to extend this further (e.g. hypergraphs)
but such inputs can usually be represented as an instance of the above

General attributed graphs

We will now define a general blueprint for a spatial GNN, which
generalises all the flavours referenced before

We use the Graph Network (Battaglia et al., 2018) as our basis
This is because it operates over generic attributed graphs

INs and MPNNs can be derived by restricting of its equations slightly

Dataflow:
• Update edge features (using graph + relevant nodes)
• Update node features (using updated relevant edges + graph)
• Update graph features (using updated nodes + edges)

+ extensive usage of skip connections!

Graph Networks

Update edge features (using graph + relevant nodes)

Graph Networks

𝐡!" = 𝜓 𝐱!, 𝐱", 𝐱!", 𝐱𝒢

Update edge features (using graph + relevant nodes)

Update node features (using updated relevant edges + graph)

Graph Networks

𝐡!" = 𝜓 𝐱!, 𝐱", 𝐱!", 𝐱𝒢

𝐡! = 𝜙 𝐱!, ?
"∈𝒩!

𝐡!" , 𝐱𝒢⨁

Update edge features (using graph + relevant nodes)

Update node features (using updated relevant edges + graph)

Update graph features (using updated nodes + edges)

Graph Networks

𝐡!" = 𝜓 𝐱!, 𝐱", 𝐱!", 𝐱𝒢

𝐡! = 𝜙 𝐱!, ?
"∈𝒩!

𝐡!" , 𝐱𝒢

𝐡𝒢 = 𝜌 ?
!∈𝒱

𝐡!, ?
(!,")∈ℰ

𝐡!" , 𝐱𝒢⨁ ⨁

⨁

(A very similar formulation treats graph features as a “master node”)

Graph Networks, visualised

Graph Networks, visualised

𝐡!" = 𝜓 𝐱!, 𝐱", 𝐱!", 𝐱𝒢

Graph Networks, visualised

𝐡! = 𝜙 𝐱!, ?
"∈𝒩!

𝐡!" , 𝐱𝒢⨁

Graph Networks, visualised

𝐡𝒢 = 𝜌 ?
!∈𝒱

𝐡!, ?
(!,")∈ℰ

𝐡!" , 𝐱𝒢⨁ ⨁

Graph Networks, visualised

Equivariant and invariant layers
feature extensively in GNs

Graph Networks, visualised

Exercise: Specify functions 𝜓,𝜙, 𝜌
to obtain standard GNNs (e.g.
GCN, GAT, MPNN), assuming
edge and graph features are given.

After introducing Deep Sets, we’ve been able to rigorously prove that
any set function satisfying permutation invariance must be expressible
as a Deep Set model

Is our GNN equally general? Can we represent any permutation
equivariant function over graphs in one of the three flavours?

We will ponder this question in future lectures, from several angles
It will be a useful topic for the practical as well!

One final food for thought

A deep dive into graph neural networks (GNNs), primarily by analysing
various strategies for building message functions:

• Convolutional GNNs: GCN, SGC, Chebyshev Networks
• Attentional GNNs: MoNet, GAT, GATv2
• Message-passing GNNs: IN, MPNN, Graph Networks

The Graph Network architecture over generic attributed graphs

Applications: social networks, physics, computational chemistry

What have we covered?

Practical (to be released on Moodle ~Wednesday!)
graph manipulation, geometric GNNs, open-ended paper review
Prepared by Miruna Crețu, Iulia Duță,
Rishabh Jain, Chaitanya Joshi and Dr Paul Scherer

Deep Dives 1 next Monday
featuring Charlie Harris, Chaitanya Joshi and Dr Dobrik Georgiev

Afterwards, we will explore the other key ”moving parts” in GNNs
This will allow us to connect GNNs to many other important areas of
computer science, e.g.: NLP, signal processing and classical algorithms

(If you haven’t reached out to your project advisor(s), please do so!)

What’s next?

