
Learning in High Dimension
Michael Bronstein – Geometric Deep Learning – Oxford 2024

Outline

• Supervised machine learning has three sources of error: approximation, estimation,
and optimisation

• Dealing with high-dimensional inputs requires strong notions of regularity

• Standard function classes based on local/global continuity are dimensionality-cursed

• This will bring us to the need for a new geometric type of regularity, which is at the
core of Geometric Deep Learning

{cat,dog}

Given a set of observations 𝑥! , 𝑦! !"#
$ of some function 𝑓∗

(“training set”) predict its values at previously unseen points

𝑥

𝑦

(Supervised) Machine Learning = glorified curve fitting

?

𝑓∗

𝑥

𝑦

(Supervised) Machine Learning = glorified curve fitting

How the function
looks like?

𝑥

𝑦

(Supervised) Machine Learning = glorified curve fitting

How the function
looks like?

How the sampling
looks like?

𝑥

𝑦

(Supervised) Machine Learning = glorified curve fitting

How the function
looks like?

How the sampling
looks like?

How to find the
fitting?

approximation estimation optimisation

BASICS OF STATISTICAL
MACHINE LEARNING

Problem setting

• Inputs 𝑥! ∈ 𝒳 typically high dimensional (e.g. 𝒳 = ℝ&, 𝑑 ≫ 1)

• Labels 𝑦! ∈ 𝒴

• Regression: 𝒴= ℝ

• Classification: 𝒴= 1,… , 𝐾

• Structured prediction: 𝒴= 𝒳

Regression
(solubility logP)

–0.07

Classification
(binary: cat/dog)

cat

Structured prediction
(image segmentation)

Examples of Supervised Learning problems

𝑥#

𝑥'

Data

• Data distribution 𝑃 𝑥, 𝑦

• Distribution 𝑃 is unknown during learning

• Samples assumed to be drawn i.i.d.

• Often forms a low-dimensional structure in 𝒳
(“manifold assumption”)

Manifold Assumption

Tenenbaum, De Silva, Langford 2000

Error metric

• Loss function ℓ: 𝒴×𝒴 → ℝ satisfying ℓ 𝑦, 𝑦′ ≥ 0 and ℓ 𝑦, 𝑦 = 0

• Classification loss: ℓ 𝑦, 𝑦′ ≥ 1!"!#

• Regression loss: ℓ 𝑦, 𝑦′ = 𝑦 − 𝑦′ $

• Given a function 𝑓:𝒳 → 𝒴, the loss ℓ 𝑓 𝑥 , 𝑦 is a random variable

Error metric

• Loss function ℓ: 𝒴×𝒴 → ℝ satisfying ℓ 𝑦, 𝑦′ ≥ 0 and ℓ 𝑦, 𝑦 = 0

• Population risk (or error) of 𝑓

ℛ 𝑓 = 𝔼ℓ 𝑓 𝑥 , 𝑦 = 4
𝒳×𝒴

ℓ 𝑓 𝑥 , 𝑦 d𝑃 𝑥, 𝑦

= 𝔼+ 𝔼,|+ ℓ 𝑓 𝑥 , 𝑦 |𝑥 = 4
𝒳
4
𝒴
ℓ 𝑓 𝑥 , 𝑦 d𝑃,|+ 𝑦 d𝑃+ 𝑥

Conditioning on 𝑥

Error metric

• Loss function ℓ: 𝒴×𝒴 → ℝ satisfying ℓ 𝑦, 𝑦′ ≥ 0 and ℓ 𝑦, 𝑦 = 0

• Population risk (or error) of 𝑓

ℛ 𝑓 = 𝔼ℓ 𝑓 𝑥 , 𝑦 = 𝔼+𝔼,|+ ℓ 𝑓 𝑥 , 𝑦 |𝑥

• Bayes optimal estimator minimises the error point-wise

𝑓∗ 𝑥 = argmin
.∈𝒴

𝔼*|, ℓ 𝑧, 𝑦 |𝑥

• Defined via distribution 𝑃, which is unknown in practice

• 𝑓∗ may be arbitrarily complex

input space 𝒳

la
be

l s
pa

ce
 𝒴

Data distribution
𝑃𝒳 𝑥

Joint distribution
𝑃 𝑥, 𝑦

𝑓

𝑓 𝑥

CATS
DOGS

Conditional
distribution
𝑃 𝑦|𝑥

𝑥 𝑥′

Model class

• Hypothesis (or model) class is a subset of functions ℱ = 𝑓0 : 𝒳 → 𝒴 ∶ 𝜃 ∈ Θ

• Polynomials of degree 𝑘: 𝑓0 𝑥 = ∑!"12 𝜃!𝑥!

• Neural networks of certain type (with 𝜃 being layer weights)

Model class

• Hypothesis (or model) class is a subset of functions ℱ = 𝑓0 : 𝒳 → 𝒴 ∶ 𝜃 ∈ Θ

• Model complexity (or capacity) is some non-negative function 𝛾: Θ → ℝ allowing to
order the functions in ℱ according to their “complexity”

• Weight decay 𝛾 𝜃 = 𝜃 3
3 in a linear model 𝑓0 𝑥 = 𝜃, 𝑥

• Number of neurons in a neural network

• Sobolev norm 𝛾 𝜃 = ∫ℝ 1 + 𝜔' 5 8𝑓0 𝜔
'd𝜔

Sobolev space 𝐻% = 𝑊%,$ is a generalization of the Lebesgue space 𝐿$ (square-integrable functions) accounting
for the function’s derivatives

Note: confusingly, 0𝑓 here denotes the Fourier transform of 𝑓

Model class

• Hypothesis (or model) class is a subset of functions ℱ = 𝑓0 : 𝒳 → 𝒴 ∶ 𝜃 ∈ Θ

• Model complexity (or capacity) is some non-negative function 𝛾: Θ → ℝ allowing to
order the functions in ℱ according to their “complexity”

• Weight decay 𝛾 𝜃 = 𝜃 3
3 in a linear model 𝑓0 𝑥 = 𝜃, 𝑥

• Number of neurons in a neural network

• Sobolev norm 𝛾 𝜃 = ∫ℝ 1 + 𝜔' 5 8𝑓0 𝜔
'd𝜔

• Implicitly defined through optimisation algorithm (e.g. gradient descent of under-determined
least-squares problem converges to interpolating solution with minimum 𝐿'-norm)

Empirical risk

• Empirical risk (or error) replaces the expectation of the loss with an average on the
training set 𝑥! , 𝑦! !"#

$:

Bℛ 𝑓 =
1
𝑁
E
!"#

$

ℓ 𝑓 𝑥! , 𝑦!

• Generalisation gap = ;ℛ 𝑓 − ℛ 𝑓

• ;ℛ 𝑓 is a random function serving an unbiased estimator of ℛ 𝑓

• Variance 𝜎 𝑓 ~𝒪 #
$

• Hoeffding inequality 𝑃 ;ℛ 𝑓 − ℛ 𝑓 > 𝜀 ≤ 2𝑒6'7'$

“ ;ℛ 𝑓 = ℛ 𝑓 is probably approximately correct”

• Tells how good a given 𝑓 is but not the model class ℱ
(more delicate analysis: VC dimension, Rademacher complexity) ℛ 𝑓

;ℛ 𝑓𝑁 → ∞

𝜀 𝜀

Empirical risk minimisation

• Supervised learning = minimisation of the empirical risk over a training set 𝑥! , 𝑦! !"#
$

w.r.t. the parameters of a model class ℱ = 𝑓0 : 𝒳 → 𝒴 ∶ 𝜃 ∈ Θ :

B𝜃 ∈ argmin
0∈8

Bℛ 𝑓0

in hope that the estimator F𝑓 = 𝑓90 generalises well, i.e., excess risk ℛ F𝑓 − ℛ 𝑓∗ is small

• Usually a non-convex problem, can be solved only approximately!

• Achieving a small training error ;ℛ 𝑓90 fundamentally depends on the richness of the model
class (often, number of parameters Θ)

• Deep learning typically operates in overparametrised regime (Θ ≫ 𝑁), where multiple solutions
are possible

• How to make an informed choice among these solutions?

Regularisation

• Regularisation (or capacity control): find the “simplest” solution by restricting the
model capacity (“Occam’s razor principle”)

• Constrained form: 8𝜃: = argmin
0∈8

;ℛ 𝑓0 s.t. 𝛾 𝜃 ≤ 𝛿

• Penalised form: 8𝜃 = argmin
0∈8

;ℛ 𝑓0 	+ 	𝜆𝛾 𝜃

• Interpolation form: 8𝜃 = argmin
0∈8

𝛾 𝜃 s.t. ;ℛ 𝑓0 = 0

• Implicit form: stems from the optimisation algorithm

Error decomposition

• Excess risk of the estimator F𝑓 ≈ 𝑓90 obtained by (approximate) constrained empirical
risk minimisation over a nested family of functions ℱ: = 𝑓0 : 𝒳 → 𝒴 ∶ 𝜃 ∈ Θ, 𝛾 𝜃 ≤ 𝛿

ℛ F𝑓 − ℛ 𝑓∗

Error decomposition

• Excess risk of the estimator F𝑓 ≈ 𝑓90 obtained by (approximate) constrained empirical
risk minimisation over a nested family of functions ℱ: = 𝑓0 : 𝒳 → 𝒴 ∶ 𝜃 ∈ Θ, 𝛾 𝜃 ≤ 𝛿

ℛ F𝑓 − ℛ 𝑓∗ = ℛ F𝑓 	− 	 min
; 0 <: ℛ 𝑓0 	+ 	 min

; 0 <: ℛ 𝑓0 − ℛ 𝑓∗

best model
𝑓(∗ ∈ ℱ)

Note: Here we assume for simplicity the min is attained (more generally, should be inf)

Error decomposition

• Excess risk of the estimator F𝑓 ≈ 𝑓90 obtained by (approximate) constrained empirical
risk minimisation over a nested family of functions ℱ: = 𝑓0 : 𝒳 → 𝒴 ∶ 𝜃 ∈ Θ, 𝛾 𝜃 ≤ 𝛿

ℛ F𝑓 − ℛ 𝑓∗ = ℛ F𝑓 	− 	ℛ 𝑓0∗ 	+ 	ℛ 𝑓0∗ − ℛ 𝑓∗

approximation error
“how expressive ℱ) is”

ℱ4

𝑓∗

Ideal
solution

Model class

ℛ

𝑓0∗

Best
model

approx.

Error decomposition

• Excess risk of the estimator F𝑓 ≈ 𝑓90 obtained by (approximate) constrained empirical
risk minimisation over a nested family of functions ℱ: = 𝑓0 : 𝒳 → 𝒴 ∶ 𝜃 ∈ Θ, 𝛾 𝜃 ≤ 𝛿

ℛ F𝑓 − ℛ 𝑓∗ = ℛ F𝑓 	− 	ℛ 𝑓0∗ 	+ 	ℛ 𝑓0∗ − ℛ 𝑓∗

approximation error
“how expressive ℱ) is”

Error decomposition

• Excess risk of the estimator F𝑓 ≈ 𝑓90 obtained by (approximate) constrained empirical
risk minimisation over a nested family of functions ℱ: = 𝑓0 : 𝒳 → 𝒴 ∶ 𝜃 ∈ Θ, 𝛾 𝜃 ≤ 𝛿

ℛ F𝑓 − ℛ 𝑓∗ = ℛ F𝑓 − Bℛ F𝑓 	+ 	 Bℛ 𝑓90 − ℛ 𝑓0∗ 	+ 	 Bℛ F𝑓 − 	 Bℛ 𝑓90 + 	ℛ 𝑓0∗ − ℛ 𝑓∗

optimisation error
“how far 0𝑓 is from 𝑓+(”

approximation error
“how expressive ℱ) is”

ℱ4

𝑓∗
𝑓90

Ideal
solutionTrained

estimator

Model class

ℛ

Bℛ

𝑓0∗

Best
model

F𝑓
opti

m approx.Initial
guess

Error decomposition

• Excess risk of the estimator F𝑓 ≈ 𝑓90 obtained by (approximate) constrained empirical
risk minimisation over a nested family of functions ℱ: = 𝑓0 : 𝒳 → 𝒴 ∶ 𝜃 ∈ Θ, 𝛾 𝜃 ≤ 𝛿

ℛ F𝑓 − ℛ 𝑓∗ = ℛ F𝑓 − Bℛ F𝑓 	+ 	 Bℛ 𝑓90 − ℛ 𝑓0∗ 	+ 	 Bℛ F𝑓 − 	 Bℛ 𝑓90 + 	ℛ 𝑓0∗ − ℛ 𝑓∗

optimisation error
“how far 0𝑓 is from 𝑓+(”

approximation error
“how expressive ℱ) is”

5ℛ 𝑓+(= min
, (-)

5ℛ 𝑓 ≤ 5ℛ 𝑓(∗

+	 Bℛ F𝑓 − 	 Bℛ 𝑓90 + 	ℛ 𝑓0∗ − ℛ 𝑓∗

Error decomposition

• Excess risk of the estimator F𝑓 ≈ 𝑓90 obtained by (approximate) constrained empirical
risk minimisation over a nested family of functions ℱ: = 𝑓0 : 𝒳 → 𝒴 ∶ 𝜃 ∈ Θ, 𝛾 𝜃 ≤ 𝛿

ℛ F𝑓 − ℛ 𝑓∗ ≤ ℛ F𝑓 − Bℛ F𝑓 	+ 	 Bℛ 𝑓0∗ − ℛ 𝑓0∗

optimisation error
“how far 0𝑓 is from 𝑓+(”

approximation error
“how expressive ℱ) is”

Error decomposition

• Excess risk of the estimator F𝑓 ≈ 𝑓90 obtained by (approximate) constrained empirical
risk minimisation over a nested family of functions ℱ: = 𝑓0 : 𝒳 → 𝒴 ∶ 𝜃 ∈ Θ, 𝛾 𝜃 ≤ 𝛿

ℛ F𝑓 − ℛ 𝑓∗ ≤ 2	sup
; 0 <:

Bℛ 𝑓0 − ℛ 𝑓0

optimisation error
“how far 0𝑓 is from 𝑓+(”

approximation error
“how expressive ℱ) is”

+	 Bℛ F𝑓 − 	 Bℛ 𝑓90 + 	ℛ 𝑓0∗ − ℛ 𝑓∗

estimation error
“how far the empirical risk
is from the population risk”

ℱ4

𝑓∗
𝑓90

Ideal
solutionTrained

estimator

Model class

ℛ

Bℛ

𝑓0∗

Best
model

F𝑓
opti

m approx.
;ℛ − ℛ =

estimation

ℱ4

𝑓∗
𝑓90

Ideal
solution

Model class

ℛ

Bℛ

𝑓0∗

Best
model

approx.
;ℛ − ℛ =

estimation

ℱ4/<

𝑓∗
𝑓90

Ideal
solution

Model class

ℛ

Bℛ

𝑓0∗

Best
model

approx.
;ℛ − ℛ =

estimation

Classical Bias-Variance tradeoff

model complexity

er
ro

r

ge
ne

ral
isa

tio
n

approximation

es
tim

ati
on

Classical Bias-Variance tradeoff

model complexity

er
ro

r

Underfitting Overfitting

in
te

rp
ol

at
io

n
th

re
sh

ol
d

Modern Bias-Variance tradeoff: “Double Descent”

model complexity

er
ro

r

in
te

rp
ol

at
io

n
th

re
sh

ol
d “modern”

regime

“classical”
regime

Neal et al. 2018; Belkin et al. 2019

THE STORY IN HIGH
DIMENSIONS

𝑥#

𝑦

“Glorified curve fitting”

underlying assumption of function “regularity”

𝑥'

𝑥>

Nearest-neighbour classifier

“my neighbours are similar to me”

𝑥#

𝑥'

Nearest-neighbour classifier

vol 𝐵! ℝ" ≈ 0.785

𝑟=0.5

𝑥#

𝑥'

Nearest-neighbour classifier

vol 𝐵! ℝ# ≈ 0.524

𝑥#

𝑥'

𝑥?

𝑟=0.5

Nearest-neighbour classifier

vol 𝐵! ℝ!$ ≈ 0.002

𝑥#

𝑥'

𝑥?

𝑥>

Bellman 1957

“[dimensionality is] a curse which has hung over
the head of the physicist and astronomer for many
a year. ”

 — Dynamic Programming

R. Bellman

Approximation Estimation Optimisation

Curse of dimensionality

CURSE IN ESTIMATION

Learning Lipschitz functions

• A function 𝑓:𝒳 ⊆ ℝ& → ℝ is 𝜷-Lipschitz if |𝑓 𝑥 − 𝑓 𝑥@ | ≤ 𝛽 𝑥 − 𝑥@

• 𝛽 = Lip 𝑓 is the Lipschitz constant of 𝑓

• Strong form of uniform continuity

• Global property (unlike simple continuity)

Reminder:
𝑓 is continuous at 𝑥 if ∀𝜀 > 0	 ∃𝛿 > 0 s.t. ∀𝑥#	 𝑥 − 𝑥# < 𝛿	 ⟹ 𝑓 𝑥 − 𝑓 𝑥# < 𝜀.
𝑓 is uniformly continuous if ∀𝜀 > 0	 ∃𝛿 > 0 s.t. ∀𝑥, 𝑥#	 𝑥 − 𝑥# < 𝛿	 ⟹ 𝑓 𝑥 − 𝑓 𝑥# < 𝜀.

Learning Lipschitz functions

• A function 𝑓:𝒳 ⊆ ℝ& → ℝ is 𝜷-Lipschitz if |𝑓 𝑥 − 𝑓 𝑥@ | ≤ 𝛽 𝑥 − 𝑥@

• 𝛽 = Lip 𝑓 is the Lipschitz constant of 𝑓

• Strong form of uniform continuity

• Global property (unlike simple continuity)

How many samples 𝑁 are needed to approximate a
Lipschitz function in ℝ% 	with accuracy 𝜀?

Learning Lipschitz functions: Lower bound

• Consider a 1-Lipschitz function constructed as a
superpositions of blobs placed at the corners 𝐻F =
𝑧G, … , 𝑧F ∶ 	 𝑧H = ±1 of a 𝑑-dimensional hypercube

𝑓 𝑥 = E
.∈A.

𝑐.𝜑 𝑥 − 𝑧 	 𝑐. = ±1

• Assume 𝑓 is sampled at 𝑁 samples

−1 +1

+1

−1

Exercise: prove that if 𝑁 ≪ 2/ then any estimator 0𝑓 will incur a relative error of
𝔼 𝑓 − 0𝑓

$

𝔼 𝑓 $ = Θ 1

Von Luxburg, Bosquet 2004

Learning Lipschitz functions: Lower bound

−1 +1

+1

−1

Learning Lipschitz functions is a
dimensionality-cursed problem

• Consider a 1-Lipschitz function constructed as a
superpositions of blobs placed at the corners 𝐻F =
𝑧G, … , 𝑧F ∶ 	 𝑧H = ±1 of a 𝑑-dimensional hypercube

𝑓 𝑥 = E
.∈A.

𝑐.𝜑 𝑥 − 𝑧 	 𝑐. = ±1

• Assume 𝑓 is sampled at 𝑁 samples

Von Luxburg, Bosquet 2004

CURSE IN APPROXIMATION

Simple Perceptrons

F. Rosenblatt S. PapertM. Minsky

+

1
𝑏 = 𝑤/01

𝑤1
𝑤$

𝑤/

𝑦 = sign 𝐰!𝐱
𝑥1
𝑥$

𝑥/

Shallow Perceptrons

• Two-layer perceptron with a non-polynomial activation function 𝜎

ℱ = 𝑓 𝑥 = 	E
B<C

𝑣B𝜎(𝑤BD𝑥 + 𝑏B)

𝑦𝑥

+

+

+

𝑏#
𝑣#

𝑏C
𝑣C

⋮

𝜎
𝑤#

𝑤C

Shallow Perceptrons

• Two-layer perceptron with a non-polynomial activation function 𝜎

ℱ = 𝑓 𝑥 = 	E
B<C

𝑣B𝜎(𝑤BD𝑥 + 𝑏B)

• Parametrised by weights 𝐖,𝐛, 𝐯

• Various definitions of capacity, e.g.

• Number of neurons: 𝛾 𝑓 = 𝑚

• Path norm: 𝛾 𝑓 = ∑ 𝑣B 𝑤B + 𝑏B

Shallow Perceptrons are universal approximators

• Two-layer perceptron with a non-polynomial activation function 𝜎

ℱ = 𝑓 𝑥 = 	E
B<C

𝑣B𝜎(𝑤BD𝑥 + 𝑏B)

Universal Approximation Theorem: ℱ is dense
in the class of continuous 𝑑-dimensional
functions w.r.t. the uniform compact topology

Hilbert 1990 (Thirteenth Problem); Kolmogorov 1956; Arnold 1957 (“Superposition Theorem”); Hecht-Nielsen 1987 (first use in neural networks)
Cybenko 1989; Funahashi 1989; Hornik et al. 1989; Barron 1993; Leshno et al. 1993; Maiorov 1999; Pinkus 1999

K. HornikG. Cybenko
𝐴 ⊆ 𝑋 is dense in 𝑋 if 𝐴̅ = 𝑋, where 𝐴̅ = 𝐴 ∪ lim2→4 𝑎2: 𝑎2 ∈ 𝐴

Shallow Perceptrons are universal approximators

• Two-layer perceptron with a non-polynomial activation function 𝜎

ℱ = 𝑓 𝑥 = 	E
B<C

𝑣B𝜎(𝑤BD𝑥 + 𝑏B)

Universal Approximation Theorem: ℱ can
uniformly approximate any continuous 𝑑-
dimensional function on a compact set to any
desired accuracy 𝜀.

Hilbert 1990 (Thirteenth Problem); Kolmogorov 1956; Arnold 1957 (“Superposition Theorem”); Hecht-Nielsen 1987 (first use in neural networks)
Cybenko 1989; Funahashi 1989; Hornik et al. 1989; Barron 1993; Leshno et al. 1993; Maiorov 1999; Pinkus 1999

K. HornikG. Cybenko

Shallow Perceptrons are universal approximators

𝑥

𝑦

6E5F5
6E'F'

𝑣#𝑦𝑥

+

+

+

𝑤#
𝑏#

𝑣#

𝑏'
𝑤' 𝑣'

• Two-layer perceptron with a non-polynomial activation function 𝜎

ℱ = 𝑓 𝑥 = 	E
B<C

𝑣B𝜎(𝑤BD𝑥 + 𝑏B)

Shallow Perceptrons are universal approximators

𝑥

𝑦

+

+

+
⋮

• Two-layer perceptron with a non-polynomial activation function 𝜎

ℱ = 𝑓 𝑥 = 	E
B<C

𝑣B𝜎(𝑤BD𝑥 + 𝑏B)

+
⋮

+

𝑦𝑥

Shallow Perceptrons are universal approximators

Universal Approximation Theorem: 𝜎 is not polynomial iff for every
continuous function 𝑓: 𝐾 ⊂ ℝ& → ℝ defined on a compact set 𝐾 and 𝜀 > 0, there
exists a two-layer Perceptron with 𝑚 neurons and weights 𝐖,𝐛, 𝐯 s.t.

max
+∈G

𝑓 𝑥 − 	E
B<C

𝑣B𝜎(𝑤BD𝑥 + 𝑏B) < 𝜀

Cybenko 1989; Hornik 1991; Pinkus 1999

• Fixed number of layers (“bounded depth”)

• Does not tell how many neurons 𝑚 are needed (“arbitrary width”)

• Existence result: does not tell how to find the weights

• There are stronger results, including bounded depth and width

Shallow Perceptrons are universal approximators

Universal Approximation Theorem: 𝜎 is not polynomial iff for every
continuous function 𝑓: 𝐾 ⊂ ℝ& → ℝ defined on a compact set 𝐾 and 𝜀 > 0, there
exists a two-layer Perceptron with 𝑚 neurons and weights 𝐖,𝐛, 𝐯 s.t.

max
+∈G

𝑓 𝑥 − 	E
B<C

𝑣B𝜎(𝑤BD𝑥 + 𝑏B) < 𝜀

Cybenko 1989; Hornik 1991

What is the relation between dimension 𝑑,
number of neurons 𝑚, and the error 𝜀?

Approximation rates

Maiorov 1999

• Sobolev class 𝑓 ∈ 𝐻5 ℝ& = 𝑓 ∈ 𝐿' ℝ& ∶ 	 ∫ℝ. 1 + 𝜔 ' 5 8𝑓 𝜔 'd𝜔 < ∞

error is exponential 𝜀 = 𝒪 𝑚65/& dimensionality-cursed!

• Bound on the approximation error

𝜀 = inf
I∈ℱ

sup
+∈G⊂ℝ.

𝑓 𝑥 − 𝑔 𝑥

w.r.t. 𝑑, 𝑚 for different classes of functions

“functions with sufficiently many derivatives”

Approximation rates

Maiorov 1999; Barron 1993

• Sobolev class 𝑓 ∈ 𝐻5 ℝ& = 𝑓 ∈ 𝐿' ℝ& ∶ 	 ∫ℝ. 1 + 𝜔 ' 5 8𝑓 𝜔 'd𝜔 < ∞

error is exponential 𝜀 = 𝒪 𝑚65/& dimensionality-cursed!

• Barron class 𝑓 ∈ 𝑓 ∈ 𝐿' ℝ& ∶ 	 ∫ℝ. 𝜔 ' 8𝑓 𝜔 'd𝜔 < ∞

error is 𝜀 = 𝒪 𝑚6# too strong assumption in practice!

• Bound on the approximation error

𝜀 = inf
I∈ℱ

sup
+∈G⊂ℝ.

𝑓 𝑥 − 𝑔 𝑥

w.r.t. 𝑑, 𝑚 for different classes of functions

CURSE IN OPTIMISATION

How hard is optimisation in high dimensions?

• Finding a global optimum of a generic high-dimensional function is NP-hard

input space 𝒳

lo
ss

global minimum

local minimum

local minimum

How hard is optimisation in high dimensions?

• Finding a global optimum of a generic high-dimensional function is NP-hard

input space 𝒳

lo
ss

global minimum

bad local minimum

good local minimum

How hard is optimisation in high dimensions?

• Finding a global optimum of a generic high-dimensional function is NP-hard

• Deep neural networks have more benign landscapes with no “bad local minima”

input space 𝒳

lo
ss

global minimum
good local minimum

How hard is optimisation in high dimensions?

• Finding a global optimum of a generic high-dimensional function is NP-hard

• Deep neural networks have more benign landscapes with no “bad local minima”

• Most local minima are equivalent and yield similar test performance

• The probability of finding a “bad” local minimum decreases with network depth

• Finding the global minimum on the training set (as opposed to one of the many good local
ones) is not useful in practice and may lead to overfitting

How hard is optimisation in high dimensions?

Choromanska et al. 2015

Strict saddle property [choromanska], All local minima are global

loss

co
un

t
depth

25

50

100

250

500

How hard is optimisation in high dimensions?

• Finding a global optimum of a generic high-dimensional function is NP-hard

• Deep neural networks have more benign landscapes with no “bad local minima”

• Most local minima are equivalent and yield similar test performance

• The probability of finding a “bad” local minimum decreases with network depth

• Finding the global minimum on the training set (as opposed to one of the many good local
ones) is not useful in practice and may lead to overfitting

• Gradient descent can efficiently find local minima in high dimension

Jin 2017

Typical result: Noisy gradient descent can find 𝜀-approximate second-order
stationary points of a 𝛽-smooth loss function in l𝒪 𝛽	log𝑑/𝜀' iterations.

GEOMETRIC REGULARITY

ℱ = Lip

𝑓∗
𝑓90

ℛ
Bℛ

𝑓0∗
;ℛ − ℛ = ∝ 𝜀6&

estimation

• Lipschitz class is too large: estimation error is dimensionality-cursed

Findings so far: classical notions of regularity are of little use!

approximation

ℱ = 𝐻5

𝑓∗
𝑓90

ℛ
Bℛ

𝑓0∗
;ℛ − ℛ =

estimation

• Lipschitz class is too large: estimation error is dimensionality-cursed

• Sobolev class is too small: approximation error is dimensionality-cursed

Findings so far: classical notions of regularity are of little use!

approximation
𝜀 ∝ 𝑚6%//

Geometric priors

𝑥#

𝑥'

𝑓 𝑦𝑥

domain Ω

signals 𝒳 Ω

𝑓
𝑢

𝑥 𝑢 𝑦𝑥

Geometric priors

Takeaways

• Learning in high dimensions is plagued by the curse of dimensionality

• Impossible without assumptions (“priors”)

• Classical assumptions of regularity (from low-dimensional analysis) are not
appropriate priors

• Geometric priors: inputs are signals defined over low-dimensional geometric domains

• Next lectures: how to incorporate geometric priors into neural network architectures
(“Geometric Deep Learning”)

Key Concepts

• Approximation, Estimation & Optimisation errors

• Bias-Variance tradeoff

• Curse of dimensionality

• Universal approximation

Main References

• M. Bronstein et al., Geometric deep learning, arXiv:2104.13478, 2021. Section 2 “Learning in
high dimensions”

• O. Bosquet, S. Boucheron, G. Lugosi, Introduction to statistical learning theory, Lecture
Notes in Computer Science 3176, Springer, 2004. Basics of statistical ML

• U. von Luxburg, O. Bosquet, Distance-based classification with Lipschitz functions,
JMLR 5:669–695, 2004. Bounds for Lipschitz functions

• A. Pinkus, Approximation theory of the MLP model in neural networks, Acta Numerica
8:143–195, 1999. Universal approximation results for neural networks

https://arxiv.org/pdf/2104.13478.pdf
http://www.econ.upf.edu/~lugosi/mlss_slt.pdf
https://www.jmlr.org/papers/volume5/luxburg04b/luxburg04b.pdf
https://pinkus.net.technion.ac.il/files/2021/02/acta.pdf

Background Pre-Read

• A. Bronstein, Probability and statistics: a survival guide, Course notes. Refresher of
probability & statistics for ML

https://vistalab-technion.github.io/cs236781/supplements/probability_and_statistics/

