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Outline

• Supervised machine learning has three sources of error: approximation, estimation, 
and optimisation

• Dealing with high-dimensional inputs requires strong notions of regularity

• Standard function classes based on local/global continuity are dimensionality-cursed

• This will bring us to the need for a new geometric type of regularity, which is at the 
core of Geometric Deep Learning



{cat,dog}



Given a set of observations 𝑥! , 𝑦! !"#
$  of some function 𝑓∗ 

(“training set”) predict its values at previously unseen points 
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𝑦

(Supervised) Machine Learning = glorified curve fitting
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𝑥

𝑦

(Supervised) Machine Learning = glorified curve fitting

How the function 
looks like?

How the sampling 
looks like?

How to find the 
fitting?

approximation estimation optimisation



BASICS OF STATISTICAL 
MACHINE LEARNING



Problem setting

• Inputs 𝑥! ∈ 𝒳 typically high dimensional (e.g. 𝒳 = ℝ&, 𝑑 ≫ 1)

• Labels 𝑦! ∈ 𝒴

• Regression: 𝒴= ℝ

• Classification: 𝒴= 1,… , 𝐾

• Structured prediction: 𝒴= 𝒳



Regression
(solubility logP)

–0.07

Classification
(binary: cat/dog)

cat

Structured prediction
(image segmentation)

Examples of Supervised Learning problems



𝑥#

𝑥'

Data

• Data distribution 𝑃 𝑥, 𝑦

• Distribution 𝑃 is unknown during learning

• Samples assumed to be drawn i.i.d.

• Often forms a low-dimensional structure in 𝒳 
(“manifold assumption”)



Manifold Assumption

Tenenbaum, De Silva, Langford 2000



Error metric

• Loss function ℓ: 𝒴×𝒴 → ℝ satisfying ℓ 𝑦, 𝑦′ ≥ 0 and ℓ 𝑦, 𝑦 = 0 

• Classification loss:  ℓ 𝑦, 𝑦′ ≥ 1!"!#

• Regression loss:  ℓ 𝑦, 𝑦′ = 𝑦 − 𝑦′ $

• Given a function 𝑓:𝒳 → 𝒴, the loss ℓ 𝑓 𝑥 , 𝑦  is a random variable



Error metric

• Loss function ℓ: 𝒴×𝒴 → ℝ satisfying ℓ 𝑦, 𝑦′ ≥ 0 and ℓ 𝑦, 𝑦 = 0 

• Population risk (or error) of 𝑓

ℛ 𝑓 = 𝔼ℓ 𝑓 𝑥 , 𝑦 = 4
𝒳×𝒴

ℓ 𝑓 𝑥 , 𝑦 d𝑃 𝑥, 𝑦

= 𝔼+ 𝔼,|+ ℓ 𝑓 𝑥 , 𝑦 |𝑥 = 4
𝒳
4
𝒴
ℓ 𝑓 𝑥 , 𝑦 d𝑃,|+ 𝑦 d𝑃+ 𝑥

Conditioning on 𝑥



Error metric

• Loss function ℓ: 𝒴×𝒴 → ℝ satisfying ℓ 𝑦, 𝑦′ ≥ 0 and ℓ 𝑦, 𝑦 = 0 

• Population risk (or error) of 𝑓

ℛ 𝑓 = 𝔼ℓ 𝑓 𝑥 , 𝑦 = 𝔼+𝔼,|+ ℓ 𝑓 𝑥 , 𝑦 |𝑥

• Bayes optimal estimator minimises the error point-wise

𝑓∗ 𝑥 = argmin
.∈𝒴

𝔼*|, ℓ 𝑧, 𝑦 |𝑥

• Defined via distribution 𝑃, which is unknown in practice

• 𝑓∗ may be arbitrarily complex



input space 𝒳
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Data distribution 
𝑃𝒳 𝑥

Joint distribution 
𝑃 𝑥, 𝑦

𝑓

𝑓 𝑥

CATS
DOGS

Conditional 
distribution 
𝑃 𝑦|𝑥

𝑥 𝑥′



Model class

• Hypothesis (or model) class is a subset of functions ℱ = 𝑓0 : 𝒳 → 𝒴 ∶ 𝜃 ∈ Θ

• Polynomials of degree 𝑘:  𝑓0 𝑥 = ∑!"12 𝜃!𝑥!

• Neural networks of certain type (with 𝜃 being layer weights)



Model class

• Hypothesis (or model) class is a subset of functions ℱ = 𝑓0 : 𝒳 → 𝒴 ∶ 𝜃 ∈ Θ

• Model complexity (or capacity) is some non-negative function 𝛾: Θ → ℝ allowing to 
order the functions in ℱ according to their “complexity”

• Weight decay  𝛾 𝜃 = 𝜃 3
3 in a linear model 𝑓0 𝑥 = 𝜃, 𝑥

• Number of neurons in a neural network

• Sobolev norm  𝛾 𝜃 = ∫ℝ 1 + 𝜔' 5 8𝑓0 𝜔
'd𝜔

Sobolev space 𝐻% = 𝑊%,$ is a generalization of the Lebesgue space 𝐿$ (square-integrable functions) accounting 
for the function’s derivatives 

Note: confusingly, 0𝑓 here denotes the Fourier transform of 𝑓



Model class

• Hypothesis (or model) class is a subset of functions ℱ = 𝑓0 : 𝒳 → 𝒴 ∶ 𝜃 ∈ Θ

• Model complexity (or capacity) is some non-negative function 𝛾: Θ → ℝ allowing to 
order the functions in ℱ according to their “complexity”

• Weight decay  𝛾 𝜃 = 𝜃 3
3 in a linear model 𝑓0 𝑥 = 𝜃, 𝑥

• Number of neurons in a neural network

• Sobolev norm  𝛾 𝜃 = ∫ℝ 1 + 𝜔' 5 8𝑓0 𝜔
'd𝜔

• Implicitly defined through optimisation algorithm (e.g. gradient descent of under-determined 
least-squares problem converges to interpolating solution with minimum 𝐿'-norm)



Empirical risk

• Empirical risk (or error) replaces the expectation of the loss with an average on the 
training set 𝑥! , 𝑦! !"#

$ :

Bℛ 𝑓 =
1
𝑁
E
!"#

$

ℓ 𝑓 𝑥! , 𝑦!

• Generalisation gap = ;ℛ 𝑓 − ℛ 𝑓

• ;ℛ 𝑓  is a random function serving an unbiased estimator of ℛ 𝑓

• Variance  𝜎 𝑓 ~𝒪 #
$

• Hoeffding inequality 𝑃 ;ℛ 𝑓 − ℛ 𝑓 > 𝜀 ≤ 2𝑒6'7'$

“ ;ℛ 𝑓 = ℛ 𝑓  is probably approximately correct”

• Tells how good a given 𝑓 is but not the model class ℱ
(more delicate analysis: VC dimension, Rademacher complexity) ℛ 𝑓

;ℛ 𝑓𝑁 → ∞

𝜀 𝜀



Empirical risk minimisation

• Supervised learning = minimisation of the empirical risk over a training set 𝑥! , 𝑦! !"#
$  

w.r.t. the parameters of a model class ℱ = 𝑓0 : 𝒳 → 𝒴 ∶ 𝜃 ∈ Θ : 

B𝜃 ∈ argmin
0∈8

Bℛ 𝑓0

in hope that the estimator F𝑓 = 𝑓90   generalises well, i.e., excess risk ℛ F𝑓 − ℛ 𝑓∗  is small

• Usually a non-convex problem, can be solved only approximately!

• Achieving a small training error ;ℛ 𝑓90  fundamentally depends on the richness of the model 
class (often, number of parameters Θ )

• Deep learning typically operates in overparametrised regime ( Θ ≫ 𝑁), where multiple solutions 
are possible

• How to make an informed choice among these solutions?



Regularisation

• Regularisation (or capacity control): find the “simplest” solution by restricting the 
model capacity (“Occam’s razor principle”)

• Constrained form:  8𝜃: = argmin
0∈8

;ℛ 𝑓0    s.t.   𝛾 𝜃 ≤ 𝛿

• Penalised form:  8𝜃 = argmin
0∈8

;ℛ 𝑓0 	+ 	𝜆𝛾 𝜃

• Interpolation form:  8𝜃 = argmin
0∈8

𝛾 𝜃    s.t.   ;ℛ 𝑓0 = 0

• Implicit form: stems from the optimisation algorithm



Error decomposition

• Excess risk of the estimator F𝑓 ≈ 𝑓90  obtained by (approximate) constrained empirical 
risk minimisation over a nested family of functions ℱ: = 𝑓0 : 𝒳 → 𝒴 ∶ 𝜃 ∈ Θ, 𝛾 𝜃 ≤ 𝛿

ℛ F𝑓 − ℛ 𝑓∗



Error decomposition

• Excess risk of the estimator F𝑓 ≈ 𝑓90  obtained by (approximate) constrained empirical 
risk minimisation over a nested family of functions ℱ: = 𝑓0 : 𝒳 → 𝒴 ∶ 𝜃 ∈ Θ, 𝛾 𝜃 ≤ 𝛿

ℛ F𝑓 − ℛ 𝑓∗ = ℛ F𝑓 	− 	 min
; 0 <: ℛ 𝑓0 	+ 	 min

; 0 <: ℛ 𝑓0 − ℛ 𝑓∗

best model
𝑓(∗ ∈ ℱ)  

Note: Here we assume for simplicity the min is attained (more generally, should be inf)



Error decomposition

• Excess risk of the estimator F𝑓 ≈ 𝑓90  obtained by (approximate) constrained empirical 
risk minimisation over a nested family of functions ℱ: = 𝑓0 : 𝒳 → 𝒴 ∶ 𝜃 ∈ Θ, 𝛾 𝜃 ≤ 𝛿

ℛ F𝑓 − ℛ 𝑓∗ = ℛ F𝑓 	− 	ℛ 𝑓0∗ 	+ 	ℛ 𝑓0∗ − ℛ 𝑓∗

approximation error 
“how expressive ℱ)  is”



ℱ4

𝑓∗

Ideal 
solution

Model class

ℛ

𝑓0∗

Best 
model

approx.



Error decomposition

• Excess risk of the estimator F𝑓 ≈ 𝑓90  obtained by (approximate) constrained empirical 
risk minimisation over a nested family of functions ℱ: = 𝑓0 : 𝒳 → 𝒴 ∶ 𝜃 ∈ Θ, 𝛾 𝜃 ≤ 𝛿

ℛ F𝑓 − ℛ 𝑓∗ = ℛ F𝑓 	− 	ℛ 𝑓0∗ 	+ 	ℛ 𝑓0∗ − ℛ 𝑓∗

approximation error 
“how expressive ℱ)  is”



Error decomposition

• Excess risk of the estimator F𝑓 ≈ 𝑓90  obtained by (approximate) constrained empirical 
risk minimisation over a nested family of functions ℱ: = 𝑓0 : 𝒳 → 𝒴 ∶ 𝜃 ∈ Θ, 𝛾 𝜃 ≤ 𝛿

ℛ F𝑓 − ℛ 𝑓∗ = ℛ F𝑓 − Bℛ F𝑓 	+ 	 Bℛ 𝑓90 − ℛ 𝑓0∗ 	+ 	 Bℛ F𝑓 − 	 Bℛ 𝑓90 + 	ℛ 𝑓0∗ − ℛ 𝑓∗

optimisation error
“how far 0𝑓 is from 𝑓+(”

approximation error
“how expressive ℱ)  is”
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Error decomposition

• Excess risk of the estimator F𝑓 ≈ 𝑓90  obtained by (approximate) constrained empirical 
risk minimisation over a nested family of functions ℱ: = 𝑓0 : 𝒳 → 𝒴 ∶ 𝜃 ∈ Θ, 𝛾 𝜃 ≤ 𝛿

ℛ F𝑓 − ℛ 𝑓∗ = ℛ F𝑓 − Bℛ F𝑓 	+ 	 Bℛ 𝑓90 − ℛ 𝑓0∗ 	+ 	 Bℛ F𝑓 − 	 Bℛ 𝑓90 + 	ℛ 𝑓0∗ − ℛ 𝑓∗

optimisation error
“how far 0𝑓 is from 𝑓+(”

approximation error
“how expressive ℱ)  is”

5ℛ 𝑓+( = min
, ( -) 

5ℛ 𝑓 ≤ 5ℛ 𝑓(∗



+	 Bℛ F𝑓 − 	 Bℛ 𝑓90 + 	ℛ 𝑓0∗ − ℛ 𝑓∗

Error decomposition

• Excess risk of the estimator F𝑓 ≈ 𝑓90  obtained by (approximate) constrained empirical 
risk minimisation over a nested family of functions ℱ: = 𝑓0 : 𝒳 → 𝒴 ∶ 𝜃 ∈ Θ, 𝛾 𝜃 ≤ 𝛿

ℛ F𝑓 − ℛ 𝑓∗ ≤ ℛ F𝑓 − Bℛ F𝑓 	+ 	 Bℛ 𝑓0∗ − ℛ 𝑓0∗

optimisation error
“how far 0𝑓 is from 𝑓+(”

approximation error
“how expressive ℱ)  is”



Error decomposition

• Excess risk of the estimator F𝑓 ≈ 𝑓90  obtained by (approximate) constrained empirical 
risk minimisation over a nested family of functions ℱ: = 𝑓0 : 𝒳 → 𝒴 ∶ 𝜃 ∈ Θ, 𝛾 𝜃 ≤ 𝛿

ℛ F𝑓 − ℛ 𝑓∗ ≤ 2	sup
; 0 <:

Bℛ 𝑓0 − ℛ 𝑓0

optimisation error
“how far 0𝑓 is from 𝑓+(”

approximation error
“how expressive ℱ)  is”

+	 Bℛ F𝑓 − 	 Bℛ 𝑓90 + 	ℛ 𝑓0∗ − ℛ 𝑓∗

estimation error
“how far the empirical risk 
is from the population risk”
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ℱ4

𝑓∗
𝑓90

Ideal 
solution
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ℛ
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ℱ4/<

𝑓∗
𝑓90

Ideal 
solution

Model class

ℛ

Bℛ

𝑓0∗

Best 
model

approx.
;ℛ − ℛ =

estimation



Classical Bias-Variance tradeoff
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Classical Bias-Variance tradeoff

model complexity
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Modern Bias-Variance tradeoff: “Double Descent”

model complexity

er
ro

r
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sh
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d “modern” 

regime

“classical”
regime

Neal et al. 2018; Belkin et al. 2019



THE STORY IN HIGH 
DIMENSIONS



𝑥#

𝑦

“Glorified curve fitting”

underlying assumption of function “regularity”

𝑥'

𝑥>



Nearest-neighbour classifier

“my neighbours are similar to me”

𝑥#

𝑥'



Nearest-neighbour classifier

vol 𝐵! ℝ" ≈ 0.785

𝑟=0.5

𝑥#

𝑥'



Nearest-neighbour classifier

vol 𝐵! ℝ# ≈ 0.524

𝑥#

𝑥'

𝑥?

𝑟=0.5



Nearest-neighbour classifier

vol 𝐵! ℝ!$ ≈ 0.002

𝑥#

𝑥'

𝑥?

𝑥>



Bellman 1957

“[dimensionality is] a curse which has hung over 
the head of the physicist and astronomer for many 
a year. ”

 — Dynamic Programming

R. Bellman



Approximation Estimation Optimisation

Curse of dimensionality



CURSE IN ESTIMATION



Learning Lipschitz functions

• A function 𝑓:𝒳 ⊆ ℝ& → ℝ is 𝜷-Lipschitz if |𝑓 𝑥 − 𝑓 𝑥@ | ≤ 𝛽 𝑥 − 𝑥@  

• 𝛽 = Lip 𝑓  is the Lipschitz constant of 𝑓

• Strong form of uniform continuity

• Global property (unlike simple continuity)

Reminder: 
𝑓 is continuous at 𝑥 if ∀𝜀 > 0	 ∃𝛿 > 0  s.t.  ∀𝑥#	 𝑥 − 𝑥# < 𝛿	 ⟹ 𝑓 𝑥 − 𝑓 𝑥# < 𝜀.
𝑓 is uniformly continuous if ∀𝜀 > 0	 ∃𝛿 > 0  s.t.  ∀𝑥, 𝑥#	 𝑥 − 𝑥# < 𝛿	 ⟹ 𝑓 𝑥 − 𝑓 𝑥# < 𝜀.



Learning Lipschitz functions

• A function 𝑓:𝒳 ⊆ ℝ& → ℝ is 𝜷-Lipschitz if |𝑓 𝑥 − 𝑓 𝑥@ | ≤ 𝛽 𝑥 − 𝑥@  

• 𝛽 = Lip 𝑓  is the Lipschitz constant of 𝑓

• Strong form of uniform continuity

• Global property (unlike simple continuity)

How many samples 𝑁 are needed to approximate a 
Lipschitz function in ℝ% 	with accuracy 𝜀?  



Learning Lipschitz functions: Lower bound

• Consider a 1-Lipschitz function constructed as a 
superpositions of blobs placed at the corners 𝐻F =
𝑧G, … , 𝑧F ∶ 	 𝑧H = ±1  of a 𝑑-dimensional hypercube 

𝑓 𝑥 = E
.∈A.

𝑐.𝜑 𝑥 − 𝑧 	 𝑐. = ±1

• Assume 𝑓 is sampled at 𝑁 samples 

−1 +1

+1

−1

Exercise: prove that if 𝑁 ≪ 2/  then any estimator 0𝑓 will incur a relative error of
𝔼 𝑓 − 0𝑓

$

𝔼 𝑓 $ = Θ 1

Von Luxburg, Bosquet 2004



Learning Lipschitz functions: Lower bound

−1 +1

+1

−1

Learning Lipschitz functions is a 
dimensionality-cursed problem

• Consider a 1-Lipschitz function constructed as a 
superpositions of blobs placed at the corners 𝐻F =
𝑧G, … , 𝑧F ∶ 	 𝑧H = ±1  of a 𝑑-dimensional hypercube 

𝑓 𝑥 = E
.∈A.

𝑐.𝜑 𝑥 − 𝑧 	 𝑐. = ±1

• Assume 𝑓 is sampled at 𝑁 samples 

Von Luxburg, Bosquet 2004



CURSE IN APPROXIMATION



Simple Perceptrons

F. Rosenblatt S. PapertM. Minsky

+

1
𝑏 = 𝑤/01

𝑤1
𝑤$

𝑤/

𝑦 = sign 𝐰!𝐱
𝑥1
𝑥$

𝑥/



Shallow Perceptrons

• Two-layer perceptron with a non-polynomial activation function 𝜎

ℱ = 𝑓 𝑥 = 	E
B<C

𝑣B𝜎(𝑤BD𝑥 + 𝑏B)

𝑦𝑥

+

+

+

𝑏#
𝑣#

𝑏C
𝑣C

⋮

𝜎
𝑤#

𝑤C



Shallow Perceptrons

• Two-layer perceptron with a non-polynomial activation function 𝜎

ℱ = 𝑓 𝑥 = 	E
B<C

𝑣B𝜎(𝑤BD𝑥 + 𝑏B)

• Parametrised by weights 𝐖,𝐛, 𝐯 

• Various definitions of capacity, e.g.

• Number of neurons: 𝛾 𝑓 = 𝑚

• Path norm: 𝛾 𝑓 = ∑ 𝑣B 𝑤B + 𝑏B



Shallow Perceptrons are universal approximators

• Two-layer perceptron with a non-polynomial activation function 𝜎

ℱ = 𝑓 𝑥 = 	E
B<C

𝑣B𝜎(𝑤BD𝑥 + 𝑏B)

Universal Approximation Theorem: ℱ is dense 
in the class of continuous 𝑑-dimensional 
functions w.r.t. the uniform compact topology

Hilbert 1990 (Thirteenth Problem); Kolmogorov 1956; Arnold 1957 (“Superposition Theorem”); Hecht-Nielsen 1987 (first use in neural networks)
Cybenko 1989; Funahashi 1989; Hornik et al. 1989; Barron 1993; Leshno et al. 1993; Maiorov 1999; Pinkus 1999

K. HornikG. Cybenko
𝐴 ⊆ 𝑋 is dense in 𝑋 if 𝐴̅ = 𝑋, where 𝐴̅ = 𝐴 ∪ lim2→4 𝑎2: 𝑎2 ∈ 𝐴  



Shallow Perceptrons are universal approximators

• Two-layer perceptron with a non-polynomial activation function 𝜎

ℱ = 𝑓 𝑥 = 	E
B<C

𝑣B𝜎(𝑤BD𝑥 + 𝑏B)

Universal Approximation Theorem: ℱ can 
uniformly approximate any continuous 𝑑-
dimensional function on a compact set to any 
desired accuracy 𝜀.

Hilbert 1990 (Thirteenth Problem); Kolmogorov 1956; Arnold 1957 (“Superposition Theorem”); Hecht-Nielsen 1987 (first use in neural networks)
Cybenko 1989; Funahashi 1989; Hornik et al. 1989; Barron 1993; Leshno et al. 1993; Maiorov 1999; Pinkus 1999

K. HornikG. Cybenko



Shallow Perceptrons are universal approximators

𝑥

𝑦

6E5F5
6E'F'

𝑣#𝑦𝑥

+

+

+

𝑤#
𝑏#

𝑣#

𝑏'
𝑤' 𝑣'

• Two-layer perceptron with a non-polynomial activation function 𝜎

ℱ = 𝑓 𝑥 = 	E
B<C

𝑣B𝜎(𝑤BD𝑥 + 𝑏B)



Shallow Perceptrons are universal approximators

𝑥

𝑦

+

+

+
⋮

• Two-layer perceptron with a non-polynomial activation function 𝜎

ℱ = 𝑓 𝑥 = 	E
B<C

𝑣B𝜎(𝑤BD𝑥 + 𝑏B)

+
⋮

+

𝑦𝑥



Shallow Perceptrons are universal approximators

Universal Approximation Theorem: 𝜎 is not polynomial iff for every 
continuous function 𝑓: 𝐾 ⊂ ℝ& → ℝ defined on a compact set 𝐾 and 𝜀 > 0, there 
exists a two-layer Perceptron with 𝑚 neurons and weights 𝐖,𝐛, 𝐯 s.t. 

max
+∈G

𝑓 𝑥 − 	E
B<C

𝑣B𝜎(𝑤BD𝑥 + 𝑏B) < 𝜀

Cybenko 1989; Hornik 1991; Pinkus 1999

• Fixed number of layers (“bounded depth”) 

• Does not tell how many neurons 𝑚 are needed (“arbitrary width”)

• Existence result: does not tell how to find the weights

• There are stronger results, including bounded depth and width 



Shallow Perceptrons are universal approximators

Universal Approximation Theorem: 𝜎 is not polynomial iff for every 
continuous function 𝑓: 𝐾 ⊂ ℝ& → ℝ defined on a compact set 𝐾 and 𝜀 > 0, there 
exists a two-layer Perceptron with 𝑚 neurons and weights 𝐖,𝐛, 𝐯 s.t. 

max
+∈G

𝑓 𝑥 − 	E
B<C

𝑣B𝜎(𝑤BD𝑥 + 𝑏B) < 𝜀

Cybenko 1989; Hornik 1991

What is the relation between dimension 𝑑, 
number of neurons 𝑚, and the error 𝜀?  



Approximation rates

Maiorov 1999

• Sobolev class 𝑓 ∈ 𝐻5 ℝ& = 𝑓 ∈ 𝐿' ℝ& ∶ 	 ∫ℝ. 1 + 𝜔 ' 5 8𝑓 𝜔 'd𝜔 < ∞  

error is exponential 𝜀 = 𝒪 𝑚65/&   dimensionality-cursed!

• Bound on the approximation error

𝜀 = inf
I∈ℱ

sup
+∈G⊂ℝ.

𝑓 𝑥 − 𝑔 𝑥

w.r.t. 𝑑, 𝑚 for different classes of functions

“functions with sufficiently many derivatives”



Approximation rates

Maiorov 1999; Barron 1993

• Sobolev class 𝑓 ∈ 𝐻5 ℝ& = 𝑓 ∈ 𝐿' ℝ& ∶ 	 ∫ℝ. 1 + 𝜔 ' 5 8𝑓 𝜔 'd𝜔 < ∞  

error is exponential 𝜀 = 𝒪 𝑚65/&   dimensionality-cursed!

• Barron class 𝑓 ∈ 𝑓 ∈ 𝐿' ℝ& ∶ 	 ∫ℝ. 𝜔 ' 8𝑓 𝜔 'd𝜔 < ∞

error is 𝜀 = 𝒪 𝑚6#     too strong assumption in practice!

• Bound on the approximation error

𝜀 = inf
I∈ℱ

sup
+∈G⊂ℝ.

𝑓 𝑥 − 𝑔 𝑥

w.r.t. 𝑑, 𝑚 for different classes of functions



CURSE IN OPTIMISATION



How hard is optimisation in high dimensions?

• Finding a global optimum of a generic high-dimensional function is NP-hard

input space 𝒳
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How hard is optimisation in high dimensions?

• Finding a global optimum of a generic high-dimensional function is NP-hard
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How hard is optimisation in high dimensions?

• Finding a global optimum of a generic high-dimensional function is NP-hard

• Deep neural networks have more benign landscapes with no “bad local minima”

input space 𝒳
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How hard is optimisation in high dimensions?

• Finding a global optimum of a generic high-dimensional function is NP-hard

• Deep neural networks have more benign landscapes with no “bad local minima”

• Most local minima are equivalent and yield similar test performance

• The probability of finding a “bad” local minimum decreases with network depth

• Finding the global minimum on the training set (as opposed to one of the many good local 
ones) is not useful in practice and may lead to overfitting



How hard is optimisation in high dimensions?

Choromanska et al. 2015

Strict saddle property [choromanska], All local minima are global
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How hard is optimisation in high dimensions?

• Finding a global optimum of a generic high-dimensional function is NP-hard

• Deep neural networks have more benign landscapes with no “bad local minima”

• Most local minima are equivalent and yield similar test performance

• The probability of finding a “bad” local minimum decreases with network depth

• Finding the global minimum on the training set (as opposed to one of the many good local 
ones) is not useful in practice and may lead to overfitting

• Gradient descent can efficiently find local minima in high dimension 

Jin 2017

Typical result: Noisy gradient descent can find 𝜀-approximate second-order 
stationary points of a 𝛽-smooth loss function in l𝒪 𝛽	log𝑑/𝜀'  iterations. 



GEOMETRIC REGULARITY



ℱ = Lip

𝑓∗
𝑓90

ℛ
Bℛ

𝑓0∗
;ℛ − ℛ = ∝ 𝜀6&

estimation

• Lipschitz class is too large: estimation error is dimensionality-cursed

Findings so far: classical notions of regularity are of little use!

approximation



ℱ = 𝐻5

𝑓∗
𝑓90

ℛ
Bℛ

𝑓0∗
;ℛ − ℛ =

estimation

• Lipschitz class is too large: estimation error is dimensionality-cursed

• Sobolev class is too small: approximation error is dimensionality-cursed

Findings so far: classical notions of regularity are of little use!

approximation
𝜀 ∝ 𝑚6%//



Geometric priors

𝑥#

𝑥'

𝑓 𝑦𝑥



domain Ω

signals 𝒳 Ω

𝑓
𝑢

𝑥 𝑢 𝑦𝑥

Geometric priors



Takeaways

• Learning in high dimensions is plagued by the curse of dimensionality

• Impossible without assumptions (“priors”)

• Classical assumptions of regularity (from low-dimensional analysis) are not 
appropriate priors

• Geometric priors: inputs are signals defined over low-dimensional geometric domains

• Next lectures: how to incorporate geometric priors into neural network architectures 
(“Geometric Deep Learning”)



Key Concepts

• Approximation, Estimation & Optimisation errors

• Bias-Variance tradeoff

• Curse of dimensionality

• Universal approximation
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Background Pre-Read

• A. Bronstein, Probability and statistics: a survival guide, Course notes. Refresher of 
probability & statistics for ML

https://vistalab-technion.github.io/cs236781/supplements/probability_and_statistics/

