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Outline

• Geometric priors in ML problems: transformations (symmetries) of the input space 
that leave the output invariant

• Mathematically, symmetries are structure-preserving transformations forming a 
group (a central object of study in Group Theory)

• Groups act on data via group representations (a central object of study in 
Representation Theory)

• To exploit symmetries in neural networks, we use invariant and equivariant layers 
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Key ingredients of Geometric Deep Learning
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Key ingredients of Geometric Deep Learning
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How to choose the symmetry group?

Self-driving car
Translation

Self-flying plane
Translation + Rotation

Pathology
Translation + Rotation 

+ Reflection



domain 
Ω

signal
𝒳 Ω

function
ℱ 𝒳 Ω

symmetry 
group 𝐺

group representation 
𝜌 𝐺

𝐺-invariance
𝐺-equivariance

𝑔 𝜌 𝑔

𝑢

∈

𝑥

∈

𝑓

∈



GEOMETRIC DOMAINS



Geometric domains

• Domain Ω = set + some structure

Point cloud
(bare set)

Graph
(local neighbourhood)

Mesh
(local metric)



Signals on Geometric domains

• Signal 𝑥 ∈ 𝒳 Ω, 𝒞 = 𝑥: Ω	 → 	𝒞   “𝒞-valued functions on Ω”

• Domain Ω 

• Vector space 𝒞	(dimensions referred to as “channels”)
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Signals on Geometric domains

• Signal 𝑥 ∈ 𝒳 Ω, 𝒞 = 𝑥: Ω	 → 	𝒞   “𝒞-valued functions on Ω”

• Domain Ω (often no vector space structure, i.e., we cannot add points on Ω)

• Vector space 𝒞	(dimensions referred to as “channels”)

• The space of signals 𝒳 Ω, 𝒞  is a vector space (possibly infinite-dimensional)

• We can add signals and multiply them by a scalar

0.5 + 0.5 =



Signals on Geometric domains

• Signal 𝑥 ∈ 𝒳 Ω, 𝒞 = 𝑥: Ω	 → 	𝒞   “𝒞-valued functions on Ω”

• Domain Ω 

• Vector space 𝒞	(dimensions referred to as “channels”)

• The space of signals 𝒳 Ω, 𝒞  is a vector space (possibly infinite-dimensional)

• Given an inner product 0,0 𝒞  on 𝒞 and a measure 𝜇 on Ω, we can define an inner 
product on 𝒳 Ω, 𝒞  as

𝑥, 𝑦 = 3
%

𝑥 𝑢 , 𝑦 𝑢 𝒞 	d𝜇 𝑢

Exercise: prove that 𝑥, 𝑦  defined this way satisfies the axioms of an inner product 



𝒞

Ω

𝑢

𝑥 𝑢

𝓒-valued function on 𝛀
Ω ∋ 𝑢	 ↦ 𝑥 𝑢 ∈ 	𝒞



𝒞

Ω

𝑢

𝑥 𝑢

𝓒-valued field on 𝛀
Ω ∋ 𝑢	 ↦ 𝑥 𝑢 ∈ 𝒞&

𝓒-valued function on 𝛀
Ω ∋ 𝑢	 ↦ 𝑥 𝑢 ∈ 	𝒞

𝑢𝒞& 𝑥 𝑢

𝑣

𝒞'

Functions Fields



Fields on Geometric domains

• Vector (fibre) bundle 𝐸 is a family of vector 
spaces 𝒞 locally “attached to” a domain Ω 

• Globally trivial bundle 𝐸 = Ω	×	𝒞 fib
re



Fields on Geometric domains

• Vector (fibre) bundle 𝐸 is a family of vector 
spaces 𝒞 locally “attached to” a domain Ω 

• Globally trivial bundle 𝐸 = Ω	×	𝒞

• In the general case, the bundle is assumed to be only 
locally trivial

fib
re



Fields on Geometric domains

• Vector (fibre) bundle 𝐸 is a family of vector 
spaces 𝒞 locally “attached to” a domain Ω 

• Vector field (section of the bundle) 𝑥: Ω	 → 𝐸 
“continuously attaching to every point 𝑢 a vector 
from 𝒞& in a manner compatible with the bundle 
structure”

• Given an inner product 0,0 &  on 𝒞&  (Riemannian metric in differential geometry) we 
can define an inner product between vector fields as

𝑥, 𝑦 = 3
%

𝑥 𝑢 , 𝑦 𝑢 & 	d𝜇 𝑢

fib
re

𝑢

𝒞&

𝑥 𝑢



Tangent vector fields on a manifold



Domain as a Signal

• In some cases, there is no given signal defined on the domain Ω

• The structure of the domain can be considered as a signal, e.g. 

• Adjacency matrix of a graph 𝐺 = 𝑉, 𝐸  is a signal on 𝑉	×	𝑉 

• Metric tensor of a Riemannian manifold ℳ is a signal on ℳ



Regression
Ω = 𝑉, 𝐸
𝒞 = ℝ#

𝒴 = ℝ

–0.07

Classification
Ω = ℤ! 	×	ℤ!
𝒞 = ℝ"

𝒴 = 1,… , 𝐾

cat

Structured prediction
Ω = ℤ! 	×	ℤ!
𝒞 = ℝ"

𝒴 = 𝒳 ℤ! 	×	ℤ! , 0,1

Functions on Signals defined on Geometric domains

• Label function 𝑓 ∈ ℱ 𝒳 Ω, 𝒞 = 𝑓:𝒳 Ω, 𝒞 → 	𝒴
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SYMMETRY GROUPS



J. Kepler

“a transformation of an object leaving it unchanged”

Symmetry



J. Kepler

“element of a symmetry group”

Symmetry



J. Kepler

Symmetry

“invertible structure-preserving map (isomorphism) 
from the object to itself”



J. Kepler

Symmetry

“automorphism”



Examples of structure-preserving maps

Set
bijections

Manifold
homeomorphisms

Vector space
invertible matrices

Differential manifold
diffeomorphism

Reminder: 
Homeomorphism is a bijective continuous function (bicontinuous). It preserves topological structure.

Diffeomorphism is a bijective differentiable function with differentiable inverse. It preserves differential 
structure on manifolds.



Symmetry of a triangle
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rotation by 120°



Symmetry of a triangle
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reflection



Symmetry of a triangle 1
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Symmetry of a triangle
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∘ 𝐼 𝑅 𝑅# 𝐹 𝐹𝑅 𝐹𝑅#
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𝑅 𝑅 𝑅# 𝐼 𝐹𝑅# 𝐹 𝐹𝑅
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𝐹𝑅# 𝐹𝑅# 𝐹 𝐹𝑅 𝑅 𝑅# 𝐼

Cayley graph Cayley table



Groups

• Closure (𝑔ℎ ∈ 𝐺) follows from definition

• Not necessarily commutative (i.e., 𝑔ℎ ≠ ℎ𝑔). Commutative groups are called Abelian
• Groups can be finite, infinite, discrete, or continuous. 

• Lie groups such as 3D rotations are smooth manifolds (we can do calculus on them)

A group 𝐺,∗  is a set 𝐺 together with binary operation ∗	∶ 𝐺×𝐺 → 𝐺 (denoted 
by juxtaposition 𝑔 ∗ ℎ = 𝑔ℎ for brevity) satisfying the following axioms:

• Associativity: 𝑔ℎ 𝑘 = 𝑔 ℎ𝑘  for all 𝑔, ℎ, 𝑘 ∈ 𝐺 

• Identity:  ∃! 𝑒 ∈ 𝐺 satisfying 𝑒𝑔 = 𝑔𝑒 = 𝑔 for all 𝑔 ∈ 𝐺 

• Inverse:  ∃! 𝑔() ∈ 𝐺 for each 𝑔 ∈ 𝐺 satisfying 𝑔()𝑔 = 𝑔𝑔() = 𝑒



Equivalent groups

2

3 1

{1, 2, 3}  {3, 1, 2}   {2, 3, 1}

{3, 2, 1}  {2, 1, 3}   {1, 3, 2}
dihedral group

𝐷!

permutation group
𝑆!

≅

The group abstracts out the objects themselves and 
captures only how they compose



Equivalent groups

{1, 2, 3}  {3, 1, 2}   {2, 3, 1}

{3, 2, 1}  {2, 1, 3}   {1, 3, 2}

Two groups 𝐺,∗ 	and 𝐻,∘ 	are isomorphic (denoted by 𝐺,∗ ≅ 𝐻,∘ ) if there exists 
a bijection 𝜑: 𝐺 → 𝐻 (called group isomorphism) satisfying for all 𝑔, ℎ ∈ 𝐺

𝜑 𝑔 ∗ ℎ = 𝜑 𝑔 ∘ 𝜑 ℎ

2

3 1

dihedral group
𝐷!

permutation group
𝑆!

≅



Equivalent groups

{1, 2, 3}  {3, 1, 2}   {2, 3, 1}

{3, 2, 1}  {2, 1, 3}   {1, 3, 2}

2

3 1

dihedral group
𝐷!

permutation group
𝑆!

≅
Group homomorphism (don’t confuse with homeomorphism, which is a map between topological spaces) is a map 
𝜑: 𝐺,∗ → 𝐻,∘  satisfying 𝜑 𝑔 ∗ ℎ = 𝜑 𝑔 ∘ 𝜑 ℎ . It preserves group operations but not necessarily group 
structure. 

Group isomorphism is a bijective group homomorphism. It preserves group structure. 

Exercise: prove that group homomorphism maps the identity of 𝐺 to the identity of 𝐻



Groups

Discrete Continuous & Lie

Finite Countably
infinite

Compact Locally- 
compact

Cyclic 𝐶!

Dihedral	𝐷!

Permutation 𝑆!

Non locally- 
compact

Wallpaper
	𝑝4, 𝑝4𝑚

Orthogonal 
𝑂 𝑑

Special 
Orthogonal 
𝑆𝑂 𝑑

Special 
Euclidean 
𝑆𝐸 𝑑

Diffeomorphisms



Groups

Discrete Continuous & Lie

Finite Countably
infinite

Compact Locally- 
compact

Cyclic 𝐶!

Dihedral	𝐷!

Permutation 𝑆!

Non locally- 
compact

Wallpaper
	𝑝4, 𝑝4𝑚

Orthogonal 
O 𝑑

Special 
Orthogonal 
SO 𝑑

Special 
Euclidean 
SE 𝑑

Diffeomorphisms



Examples of Important groups

• Permutation (symmetric) group 𝑆! : reorder a set of 𝑛 elements

• Cyclic group 𝐶! : shift the order of 𝑛 elements by one position modulo 𝑛
• Groups of matrices of size 𝑑×𝑑 with matrix multiplication operation
• General linear group GL 𝑑 : invertible matrices
• Special linear group SL 𝑑 : volume- and orientation-preserving matrices (det = 1)

• Orthogonal group O 𝑑 : angle-preserving (orthogonal) matrices
• Special orthogonal group SO 𝑑 : volume-, orientation- and angle-preserving matrices

Exercise: show the above groups indeed satisfy the group axioms

𝑆! = 𝑛!	

𝐶! = 𝑛
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GROUP ACTIONS & 
REPRESENTATIONS



Group actions on objects

Point in a plane Image (function)

The type of an object can be defined by the way it transforms by a group

Vector field



Group action

Let 𝐺 be a group and 𝑋 a set. A (left) group action of 𝐺 on 𝑋 (often denoted 
𝑔𝑥 = 𝛼 𝑔, 𝑥 ) is a mapping of the form 𝛼 ∶ 𝐺×𝑋 → 𝑋 satisfying

• Identity:  𝛼 𝑒, 𝑥 = 𝑥 for all 𝑥 ∈ 𝑋 

• Composition:  𝛼 𝑔ℎ, 𝑥 = 𝛼 𝑔, 𝛼 ℎ, 𝑥  for all 𝑔, ℎ ∈ 𝐺 and 𝑥 ∈ 𝑋 



Group representation

• Given a group action 𝛼, a representation can be defined as 𝜌 𝑔 𝑥 = 𝛼 𝑔, 𝑥
• Preserves positive relations (e.g., 𝑔()𝑔 = 𝑔𝑔() = 𝑒) that hold in the group 𝐺
• Negative relations (of the form 𝑔ℎ ≠ 𝑘) may not be preserved
• Trivial representation 𝜌 ≡ id
• Faithful representation is injective (𝑔 ≠ ℎ ⇒ 𝜌 𝑔 ≠ 𝜌 ℎ ) and preserves negative relations
• Additional structure of 𝜌	(e.g. smoothness if 𝐺 is a Lie group)   

A representation of 𝐺 on 𝑋 is a mapping of the form 𝜌: 𝐺 → 𝑓: 𝑋 → 𝑋  that 
assigns to each 𝑔 ∈ 𝐺 a map 𝜌 𝑔 : 𝑋 → 𝑋	 satisfying

• Identity:  𝜌 𝑒 = id

• Composition:  𝜌 𝑔ℎ = 𝜌 𝑔 ∘ 𝜌 ℎ  for all 𝑔, ℎ ∈ 𝐺



Linear Group representation

A linear representation of 𝐺 on a vector space 𝑋 is group homomorphism 
𝜌: 𝐺 → GL 𝑋  that assigns to each 𝑔 ∈ 𝐺 an invertible linear map 𝜌 𝑔 : 𝑋 → 𝑋	
satisfying

𝜌 𝑔ℎ = 𝜌 𝑔 𝜌 ℎ  for all 𝑔, ℎ ∈ 𝐺

• dim 𝑋  is called the dimension of the representation
• In finite-dimensional cases, 𝜌 can be represented by matrices 
• This turns group theory into linear algebra
• Efficient implementation on standard hardware



Linear Group representation

A 𝑑–dimensional (linear) representation of 𝐺 is a map 𝜌: 𝐺 → ℝ*×*  assigning 
to each 𝑔 ∈ 𝐺 an invertible matrix 𝜌 𝑔 ∈ ℝ!×!  satisfying 𝜌 𝑔ℎ = 𝜌 𝑔 𝜌 ℎ  for 
all 𝑔, ℎ ∈ 𝐺.

Exercise 1: show that 𝜌 𝑒 = 𝐈. 

Note: such a representation is not unique! Given an invertible matrix 𝐀 (“change of basis”), we can define a new 
representation 𝜌̅ 𝑔 = 𝐀𝜌 𝑔 𝐀!".

Exercise II: verify that 𝜌̅ is indeed a representation



Group actions on Signals defined on geometric Domains

0.5 +   0.5 =

Given a group 𝐺 acting on a domain Ω, we automatically obtain an action of 𝐺 on the space 
of signals 𝒳 Ω  through the regular representation 𝜌 𝑔 𝑥 𝑢 = 𝑥 𝑔89𝑢
Exercise: prove that this representation is linear

0.5 +   0.5 =

𝑔 𝑔 𝑔



Intuition

=
1

1
1

1

1
1

Note: a 2D shift can be represented as tensor (Kronecker) product 𝐒 ⊗ 𝐒 vec 𝐗 = vec 𝐒𝐗𝐒$



	 .	

Intuition

=
1

1
1

1

1
1

0.5 + 0.5 0.5 + 0.5



Example: Symmetries of Graphs

• A graph is an abstract object



2 1
3

4
5

6

7

8

9
10 11

𝐏𝐀𝐏@ 𝐏𝐗

Adjacency 
matrix 𝑛×𝑛

Feature 
matrix 𝑛×𝑑

• A graph is an abstract object

• Its description (adjacency/feature matrix) has “extrinsic” properties (order of nodes) 

Example: Symmetries of Graphs



5 10
7

11
4

6

3

9

8
1 2

𝐏𝐀𝐏@ 𝐏𝐗

Feature 
matrix 𝑛×𝑑

Adjacency 
matrix 𝑛×𝑛

• A graph is an abstract object

• Its description (adjacency/feature matrix) has “extrinsic” properties (order of nodes) 

Example: Symmetries of Graphs



Different representations of the permutation group on Graphs

• Domain: set of 𝑛 graph vertices Ω = 1, … , 𝑛

• Group: permutations 𝐺 = 𝑆!  

Scalar
𝜌, 𝑔 𝑥 = 1 0 𝑥

Vector
𝜌) 𝑔 𝐯 = 𝐏𝐯

Matrix
𝜌- 𝑔 𝐌 = 𝐏𝐌𝐏.

Exercise: verify that each of these are valid group representations
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SYMMETRY IN LEARNING



Symmetries of the Label Function

𝑓

𝒳 𝒳

𝒴
𝑓

𝑔

• Label function 𝑓:𝒳 → 𝒴  e.g., classification (𝒴 = 1,… , 𝐾 )

• Symmetry of a label function is an invertible label-preserving map 𝑔:𝒳 → 𝒳, i.e.

𝑓 ∘ 𝑔 𝑥 = 𝑓 𝑥  for all 𝑥 ∈ 𝒳



Symmetries of the Label Function

A

A

AA

A

A

B

B

B

B

B

B

𝑓

A
B

𝒳

𝒴



Symmetries of the Label Function

A
A

A

A A

A
A

A

A

A

A

B

B

B

B B

B

B
B

B

B B

𝑓

A
B

orbit  𝐺B = 𝑔B ∶ 𝑔 ∈ 𝐺𝒳

𝒴



Symmetries of the Label Function

A

B

𝑓

𝒴

Exercise: prove that if we knew all the symmetries of the 
label function 𝑓, we would need only one sample per class

A

B

A

B

B

A
A

B



Symmetries of the Weights

⋮

𝑥)

𝑥-

𝑥*

ℎ)

ℎ- ⋮

𝑦)

𝑦-

𝑦*/

𝑎𝑏
𝑐
𝑑
𝑒
𝑓

ℎ
𝑖

𝑘
𝑙

𝑚

𝑗

⋮

𝑥)

𝑥-

𝑥*

ℎ)

ℎ- ⋮

𝑦)

𝑦-

𝑦*/

𝑏𝑎
𝑑
𝑐
𝑓
𝑒

𝑖
ℎ
𝑘

𝑚
𝑙

𝑗

• Let 𝑓/ : 𝒳×Θ → 𝒴  be a parametric model (neural network)

• A transformation ℎ: Θ → Θ is a symmetry of the weights if, for all 𝑥 ∈ 𝒳 and 𝜃 ∈ Θ
𝑓0/ 𝑥 = 𝑓/ 𝑥



Equivariance

𝑓

𝒳 𝒳

𝒴

𝜌" 𝑔

Let 𝑓:𝒳 → 𝒴 and 𝐺 a group acting on 𝒳 and 𝒴 through representation 𝜌) and 
𝜌-, respectively. Then, 𝑓 is 𝐺-equivariant if for all 𝑔 ∈ 𝐺

𝑓 𝜌9 𝑔 𝑥 = 𝜌B 𝑔 𝑓 𝑥

𝑓

𝒴
𝜌# 𝑔



Invariance: special case of Equivariance with trivial representation

𝒳 𝒳𝜌" 𝑔

Let 𝑓:𝒳 → 𝒴 and 𝐺 a group acting on 𝒳 and 𝒴 through representation 𝜌) and 
𝜌- = id, respectively. Then, 𝑓 is 𝐺-invariant if for all 𝑔 ∈ 𝐺

𝑓 𝜌9 𝑔 𝑥 = 𝑓 𝑥

𝑓
𝒴

𝑓



Geometric Deep Learning Blueprint (so far)

…
𝑓$%&𝑓'

𝑓' ∘ 𝜌' 𝑔 = 𝑓'

𝑓( 𝑓()"

𝑓( ∘ 𝜌(*" 𝑔 = 𝜌( 𝑔 ∘ 𝑓(



Example: Convolutional Neural Networks

⋆

shift 𝑆

⋆

shift 𝑆



input feature map stabilised view

Weiler, Cesa 2019

CNN

Rotation-
equivariant 
CNN



Examples of equivariance in Geometric Deep Learning

Image: M. Weiler

Manifold / Mesh
Gauge transformations

e.g. SO 2

Domain Ω:
Group:

	

Grid
Translation

(Rotation, Reflection)

Sphere
SO 3



Equivariance = Symmetry-consistent generalisation

𝑓AA

A
A

A 𝑓 𝜌" 𝑔 A = 𝜌# 𝑔 	𝑓 A  

𝜌) 𝑔 A
𝜌) 𝑔 A

?
?

input space

feature space

𝑓 𝜌" 𝑔 A = 𝜌# 𝑔 	𝑓 A  



Equivariance = Symmetry-consistent generalisation

𝑓AA

A
A

A 𝑓 𝜌" 𝑔 A = 𝜌# 𝑔 	𝑓 A  

𝜌) 𝑔 A
𝜌) 𝑔 A

input space

feature space

=

𝑓 𝜌" 𝑔 A = 𝜌# 𝑔 	𝑓 A  
𝜌- 𝑔 A

A



Canonisation

Mikolajczyk, Schmid 2004



Canonisation

canonisation



Canonisation vs Equivariance

“Jennifer”



“Jennifer”

Canonisation vs Equivariance



Canonisation vs Equivariance

“Jennifer” ?



Takeaways

• Symmetries are transformations leaving the object invariant

• In general ML, we care about symmetries of the label function and its parameters 
(neural network weights)

• In Geometric Deep Learning, we care about symmetries of a geometric domain, 
signals on which are inputs into a neural network

• Symmetry is exploited in deep learning in the form of equivariant neural networks

• In an equivariant neural network, each feature space is associated with a group 
representation and each layer is equivariant w.r.t. this representation

• Invariance is a special case of equivariance where the trivial representation is used

• Next lecture: learning under Invariance and Scale Separation geometric priors



Key Concepts

• Symmetry Groups
• Group Actions and Representations
• Invariance and Equivariance



Outline

• Group theory provides the math language to describe symmetries in ML problems 

• Equivariant neural networks are constructed such that each layer is equivariant w.r.t. 
the action of a symmetry group 

• Symmetry prior leads to a new model class that however on its own may not tame 
the curse of dimensionality

• Symmetry prior is often combined with Scale Separation, typically implemented in 
the form of pooling 

• These two geometric priors are the core of Geometric Deep Learning, a principled 
blueprint of highly expressive architectures that defy the curse of dimensionality



“Lifting”

𝜌 𝑔 :𝒳 Ω → 𝒳 Ω

𝑔: Ω → Ω

linear

nonlinear



“Lifting”

=
1

1
1

1
1

1
1

1
1

“pixel permutation”



𝑓∗ cat

Invariant learning tasks

The function is a priori assumed to be shift-invariant,

only one sample necessary per image



Data augmentation

𝑓∗ cat…

The function is generic, 

training set contains multiple shifted versions of each image 



Group-invariant function classes

𝒳 𝒴

A
A

A

A A

A
A

A

A

A

A
A 𝑓

• 𝐺-invariant model class 

ℱ1 = 𝑓:𝒳 → 𝒴	 s. t. 	 𝑓 𝑔𝑥 = 𝑓 𝑥 	 ∀𝑥 ∈ 𝒳, 𝑔 ∈ 𝐺

• How to leverage invariant function classes in learning?

• Is this generally sufficient to break the curse of dimensionality?



Group averaging

• Assume 𝐺 is discrete of finite size

• Group averaging (or smoothing) operator 𝑆1  (defined with abuse of notation as either 
𝑆1 : 𝒳 → 𝒳 or 𝑆1 : ℱ 𝒳 → ℱ 𝒳 ) averaging along group orbits

𝑆1𝑥 =
1
𝐺
r
2∈1

𝑔𝑥 	 𝑆1𝑓 𝑥 =
1
𝐺
r
2∈1

𝑓 𝑔𝑥

Note: More generally, we can define 𝑆0𝑓 𝑥 = "
1 0 ∫0 𝑓 𝑔𝑥 d𝜇 𝑔 , where 𝜇 is the Haar measure on the group



Group averaging

𝑆! = 𝑛!	

𝐶! = 𝑛

  

orbit  𝐺B = 𝑔B ∶ 𝑔 ∈ 𝐺

A

A

AA

A
A

A
A

B
B
B
B

• Assume 𝐺 is discrete of finite size

• Group averaging (or smoothing) operator 𝑆1  (defined with abuse of notation as either 
𝑆1 : 𝒳 → 𝒳 or 𝑆1 : ℱ 𝒳 → ℱ 𝒳 ) averaging along group orbits

𝑆1𝑥 =
1
𝐺
r
2∈1

𝑔𝑥 	 𝑆1𝑓 𝑥 =
1
𝐺
r
2∈1

𝑓 𝑔𝑥



Group averaging

𝑆! = 𝑛!	

𝐶! = 𝑛

  

Assume 𝑓 is 𝐺-invariant. Then, 𝑓 𝐺𝑥 = const.

• Assume 𝐺 is discrete of finite size

• Group averaging (or smoothing) operator 𝑆1  (defined with abuse of notation as either 
𝑆1 : 𝒳 → 𝒳 or 𝑆1 : ℱ 𝒳 → ℱ 𝒳 ) averaging along group orbits

𝑆1𝑥 =
1
𝐺
r
2∈1

𝑔𝑥 	 𝑆1𝑓 𝑥 =
1
𝐺
r
2∈1

𝑓 𝑔𝑥



Group averaging

𝑆! = 𝑛!	

𝐶! = 𝑛

  

Assume 𝑓 is 𝐺-invariant. Then, 𝑆1𝑓 = 𝑓.

Exercise: Let Ω = 1, … , 𝑑  a grid, 𝐺 = 𝐶2  cyclic group, and ℱ =polynomials of degree 𝑘. Write 𝑆0ℱ.  

• Given a hypothesis class ℱ, we can make it 𝐺-invariant by applying the group 
averaging operator, 𝑆1ℱ = 𝑆1𝑓, 𝑓 ∈ ℱ . 

• Assume 𝐺 is discrete of finite size

• Group averaging (or smoothing) operator 𝑆1  (defined with abuse of notation as either 
𝑆1 : 𝒳 → 𝒳 or 𝑆1 : ℱ 𝒳 → ℱ 𝒳 ) averaging along group orbits

𝑆1𝑥 =
1
𝐺
r
2∈1

𝑔𝑥 	 𝑆1𝑓 𝑥 =
1
𝐺
r
2∈1

𝑓 𝑔𝑥



Learning under invariance

𝑆! = 𝑛!	

𝐶! = 𝑛

  

• Since 𝑆1  is an orthogonal projection in 𝐿-:

Approximation error is unaffected by group smoothing, i.e., 
inf
4∈ℱ

𝑓 − 𝑓∗ - = inf
4∈73ℱ

𝑓 − 𝑓∗ -

𝑓 − 𝑓∗ - = 𝑆1 𝑓 − 𝑓∗ - + 𝐼 − 𝑆1 𝑓 − 𝑓∗ -

𝑆1𝑓𝑆1ℱ

𝑓
𝐼 − 𝑆1 𝑓

= 𝑆1𝑓 − 𝑓∗ - + 𝐼 − 𝑆1 𝑓 -

Exercise: prove



Learning under invariance

𝑆! = 𝑛!	

𝐶! = 𝑛

  

• Since 𝑆1  is an orthogonal projection in 𝐿-:

Approximation error is unaffected by group smoothing, i.e., 
inf
4∈ℱ

𝑓 − 𝑓∗ - = inf
4∈73ℱ

𝑓 − 𝑓∗ -

𝑓 − 𝑓∗ - = 𝑆1 𝑓 − 𝑓∗ - + 𝐼 − 𝑆1 𝑓 − 𝑓∗ -

= 𝑆1𝑓 − 𝑓∗ - + 𝐼 − 𝑆1 𝑓 -

𝑆1ℱ

ℱ

𝐼 − 𝑆1 𝑓 = 0

• Statistical error is reduced… but by how much?



Learning invariant Lipschitz functions

• Consider the class of Lipschitz functions 

ℱ = 𝑓:𝒳 ⊆ ℝ* → ℝ	 s. t. 	 𝑓 𝑥 − 𝑓 𝑥8 ≤ 𝛽 𝑥 − 𝑥8 	 ∀𝑥, 𝑥8 ∈ 𝒳

• Group-averaged Lipschitz class 

𝑆1ℱ = 𝑓:𝒳 ⊆ ℝ* → ℝ	 s. t. 	 𝑓 𝑥 − 𝑓 𝑥8 ≤ 𝛽 inf
2∈1

𝑥 − 𝑔𝑥8 	 ∀𝑥, 𝑥8 ∈ 𝒳

A

A

A
A A

A

A
A

“points in nearby orbits are not 
mapped too far away”



Learning invariant Lipschitz functions

• Sharp gains w.r.t. non-invariant kernels

• Group size 𝐺  can be exponential in dimension

• Rate can still be dimensionality-cursed, suggesting invariance alone is insufficient

Theorem: Using 𝐺-invariant kernel ridge regression, the generalisation error 
of learning a 𝐺-invariant 𝑑-dimensional Lipschitz function from 𝑁	samples is 
bounded by  

𝔼 𝑅 �𝑓 − 𝑅 𝑓∗ ≲ 𝐺 𝑁 ()/*

Bietti, Venturi, Bruna 2021



Conclusions so far

• Using known global symmetries in hypothesis class is a no-brainer: guaranteed 
improvement in sample complexity

• Might not break the curse of dimensionality. What else is missing?

• How to build such invariant classes efficiently? I.e., we need an algorithmic recipe



SCALE SEPARATION



Compositionality in Deep Learning

Increasingly complex features in deeper layers of a convolutional neural network



Compositionality in Physics



Ωcoarse 
graining 𝑃

�Ω

Multiresolution Analysis

Fine scale 𝒳 Ω

Coarse scale 𝒳 �Ω

• Hierarchy of domains … ⊂ �Ω ⊂ Ω

• Hierarchy signal spaces 𝒳 Ω , 𝒳 �Ω ,…  

• Coarse graining operator 

𝑃:𝒳 Ω → 𝒳 �Ω



Multiresolution Analysis

Fine detail

Coarse approximation



Wavelets

S. MallatI. Daubechies



Wavelets vs Fourier

J. Fourier S. MallatI. Daubechies



Wavelets vs Fourier

J. Fourier S. MallatI. Daubechies
space 𝑢
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Ω

𝑓 𝑦

coarse 
graining 𝑃

�Ω

"𝑓 #𝑦

𝑥

#𝑥

Multiresolution Analysis in ML

Fine scale 𝒳 Ω

Coarse scale 𝒳 �Ω



{beach, mountain}

Fine scale 𝒳 Ω

𝑓∗



𝑓∗ 𝑥 ≈ 6𝑓∗(𝑃𝑥) 

Fine scale 𝒳 Ω

Coarse scale 𝒳 �Ω

Coarse graining
𝑃:𝒳 Ω → 𝒳 �Ω

𝑓∗

.𝑓∗

Coarse scale dominates

{beach, mountain}



Fine scale 𝒳 Ω

Coarse scale 𝒳 �Ω

Coarse graining
𝑃:𝒳 Ω → 𝒳 �Ω

𝑓∗

.𝑓∗

Since 𝑑 ∝ Ω  and <Ω ≪ Ω  the curse 
of dimensionality may be tamed

{beach, mountain}



{0,1,2,3,4,5,6,7,8,9}
Fine scale 𝒳 Ω

Coarse scale 𝒳 �Ω

Coarse graining
𝑃:𝒳 Ω → 𝒳 �Ω

𝑓∗

.𝑓∗

Coarse scale is insufficient: 
fine scale is necessary!



{brick, grass}

𝑓∗ 𝑥 ≈>
,

𝑔 𝑥,

Fine scale dominates

=image patch centered at 𝑢  𝑥&



{brick, grass}

Since 𝑑 ∝	patch size, the curse of 
dimensionality can be avoided 

=image patch centered at 𝑢  𝑥&



N-body system

Local phenomena in Physics

d#𝐱(
d𝑡#

=>
-."
-/(

0

𝐺𝑚-
𝐱( − 𝐱-
𝐱( − 𝐱-

!



?

Local vs Global



Turk 2001

Local patches do not convey information about global structure

Local vs Global



Multiscale compositional priors



Multiscale compositional priors

𝑃 6𝑓

Nonlinear 
coarsening 
(pooling)

Nonlinear 
function

𝒴…



Benefits of composition

• Provable approximation, estimation, and computational benefits in specific contexts
• General structure of multiscale hypothesis spaces is still not completely understood 

theoretically
• Combining Symmetry and Scale Separation priors gives powerful model from first 

principles

Telgarsky 2015; Cohen & Shashua 2016



THE BLUEPRINT



Combining Invariance with Scale Separation

• Our hypothesis class wish list:

• Group invariance

• Multiscale structure

• Expressivity

• What neural network architecture can satisfy these desiderata?



Linear group invariants

Let 𝑓:𝒳 → ℝ be linear 𝐺-invariant. Then 𝑓 𝑥 = 𝑓 𝑆1𝑥  for all 𝑥 ∈ 𝒳, i.e., 
group average is the only linear group invariant.  

• Linear invariants are not expressive: 𝑓 depends on 𝑥 through the group average 𝑆1𝑥

• In case of images with translation, it would amount to using only the average colour! 

𝑓     = 𝑓     =

Exercise: prove



Linear group equivariants

• Assume 𝑓:𝒳 → 𝒳′ is linear 𝐺-equivariant, i.e., is linear and satisfies 𝑓 𝑔𝑥 = 𝑔𝑓 𝑥  for 
all 𝑥 ∈ 𝒳 and 𝑔 ∈ 𝐺 

• Many examples in deep learning: 

• Convolutions in CNNs (equivariant w.r.t. translation)

•  Message passing in GNNs (equivariant w.r.t. permutation)

• Can we combine linear equivariants with a linear invariant?



…





Element-wise nonlinearity

• Element-wise nonlinear function 𝜎:𝒳 → 𝒳	defined as 𝜎𝑥 𝑢 = 𝜎 𝑥 𝑢

• Allows to make nonlinear equivariants out of linear ones by composition: if 𝑓:𝒳 → 𝒳 
is linear 𝐺-equivariant, then the composition 𝜎 ∘ 𝑓 is nonlinear 𝐺- equivariant

Exercise: prove

𝜎



Geometric Deep Learning Building Blocks

• Linear equivariant:   𝐵:𝒳 Ω → 𝒳′ Ω  satisfying 𝐵 𝑔𝑥 = 𝑔𝐵 𝑥

• Nonlinearity:  𝜎:𝒳 → 𝒳 applied element-wise, 𝜎𝑥 𝑢 = 𝜎 𝑥 𝑢  

• Local pooling (coarsening):  𝑃:𝒳 Ω → 𝒳 �Ω

• Invariant layer (global pooling):  𝐴:𝒳 → 𝒴 satisfying 𝐴 𝑔𝑥 = 𝐴 𝑥



𝜎 …𝜎

Geometric Deep Learning Blueprint



Architecture Domain Ω Symmetry Group 𝕲
CNN Grid Translation
Spherical CNN Sphere / SO(3) Rotation SO(3)
Intrinsic / Mesh CNN Manifold / Mesh Isometry Iso(Ω) /

Gauge Symmetry SO(2)
GNN Graph Permutation SN
Deep Sets Set Permutation SN
Transformer Complete Graph Permutation SN
LSTM 1D Grid Time warping

Popular architectures as instances of the Blueprint



APPROXIMATE INVARIANCE 
& GEOMETRIC STABILITY



Approximate group invariance

𝒳 𝒴

A

A

A

A A

A

A

A

A

A

A

A

𝑓

X

orbit 𝐺A



Approximate group invariance

𝒳 𝒴

A

A

A A

A

A

A

A

A

A

A

𝑓

A

orbit 𝐺A

“Approximate invariance to transformations 
approximately in the group 𝐺”



Approximate group invariance

𝒳 𝒴

A

A

A A

A

A

A

A

A

A

A

𝑓

A

orbit 𝐺A

“Approximate invariance to transformations 
approximately in the group 𝐺”



• A function 𝑓	is said to be geometrically stable if for a general deformation 𝜏: Ω → Ω 
and some distance 𝑑 on the space of transformations  

𝑓 𝑥 ∘ 𝜏() − 𝑓 𝑥 ≤ 𝑑 𝜏, 𝐺 𝑥

Approximate group invariance

𝒳 𝒴

A

A

A A

A

A

A

A

A

A

A

𝑓

A

orbit 𝐺A



A geometrically stable function obeys a bound of the form

𝑓 𝑥 ∘ 𝜏() − 𝑓 𝑥 ≤ ∇𝜏 𝑥

Example: 2D warping

Translation 

∇𝜏 -=3
ℝ4

∇𝜏 𝑢 -d𝑢 =0

Warping 

∇𝜏 - > 0

Bruna, Mallat 2012



Stability under domain deformation



Stability under domain deformation



Stability under domain deformation



Takeaways

• Invariance reduces the sampling complexity but on its own might not be sufficient to 
tame the curse of dimensionality

• Symmetry prior must be combined with Scale Separation
• Linear invariants are not sufficiently expressive
• Instead, one may use nonlinear equivariants obtained by combining linear equivariants 

with element-wise nonlinearities
• Combination of these principles leads to a novel hypothesis class that is expressive and 

able to tame the curse of dimensionality. 
• Its implementation in the form of neural networks is what we call the Geometric Deep 

Learning blueprint 
• Next lectures: examples of instances of the Geometric Deep Learning blueprint on 

different domains / symmetry groups



Key Concepts

• Scale separation and multiresolution analysis
• Linear equivariants and invariants
• Geometric Deep Learning blueprint
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