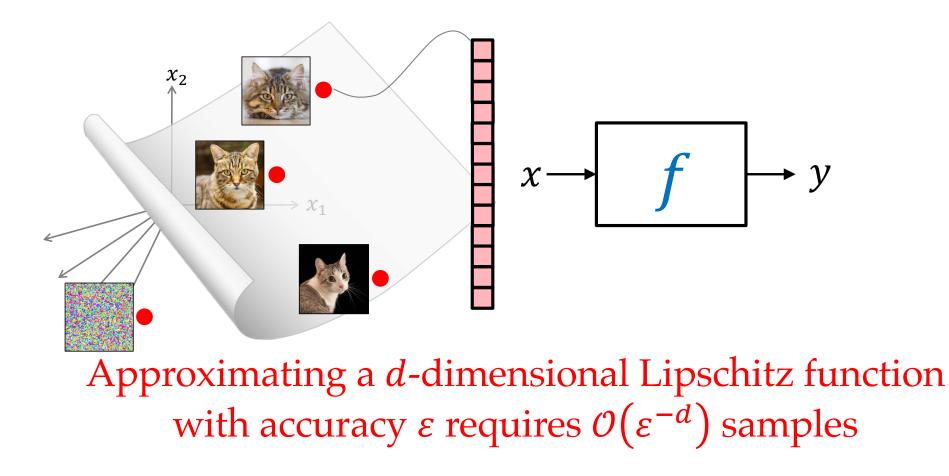


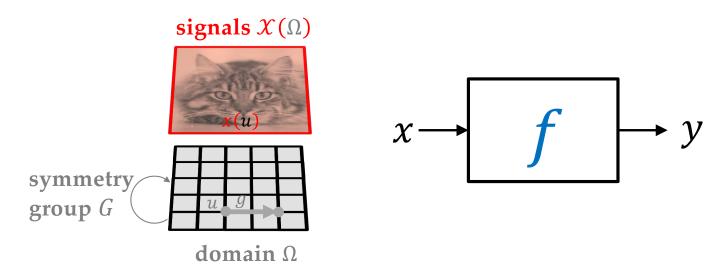
Outline

- Geometric priors in ML problems: transformations (symmetries) of the input space that leave the output *invariant*
- Mathematically, symmetries are structure-preserving transformations forming a *group* (a central object of study in Group Theory)
- Groups act on data via *group representations* (a central object of study in Representation Theory)
- To exploit symmetries in neural networks, we use *invariant* and *equivariant layers*

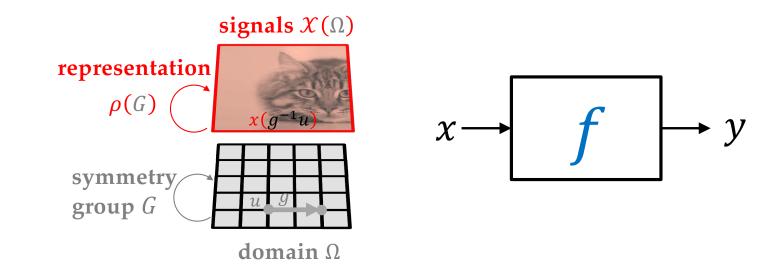
The Curse of Dimensionality



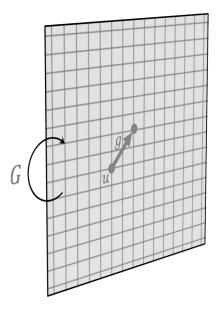
Geometric priors



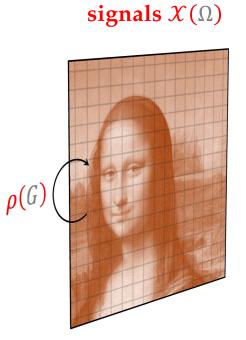
Geometric priors



Key ingredients of Geometric Deep Learning

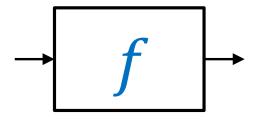


domain symmetry group G



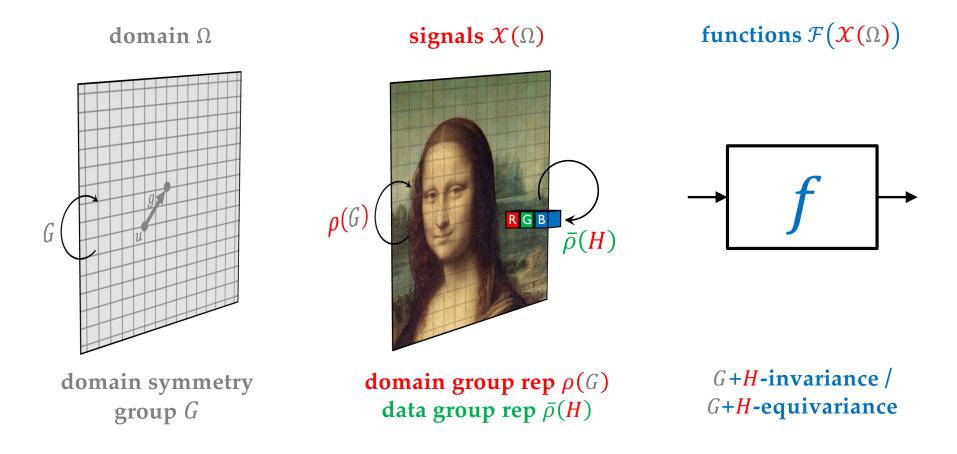
domain group rep $\rho(G)$

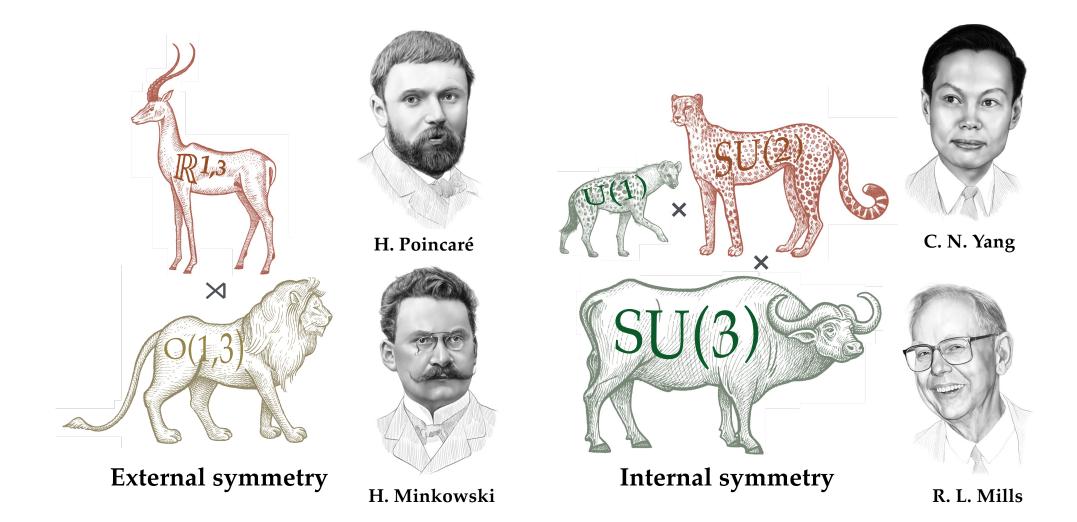
functions $\mathcal{F}(\boldsymbol{X}(\Omega))$



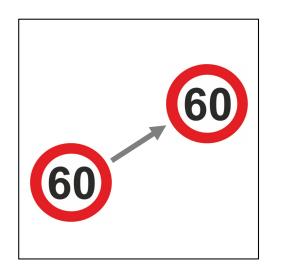
G-invariance / *G*-equivariance

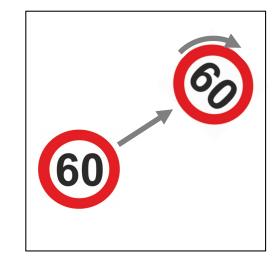
Key ingredients of Geometric Deep Learning

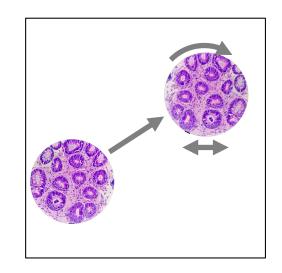




How to choose the symmetry group?





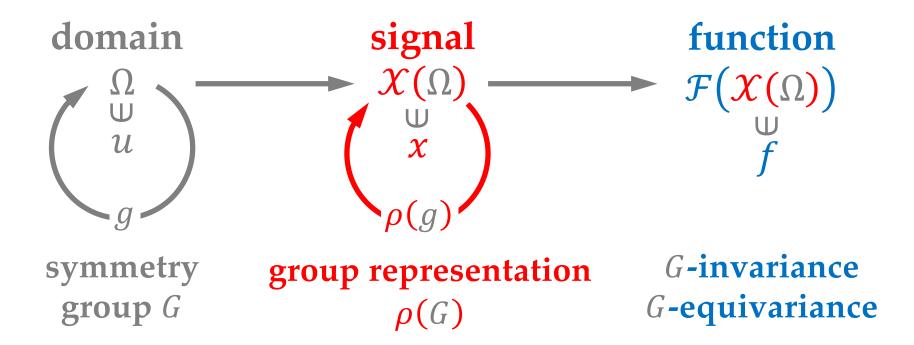


Self-driving car Translation

Self-flying plane Translation + Rotation

Pathology

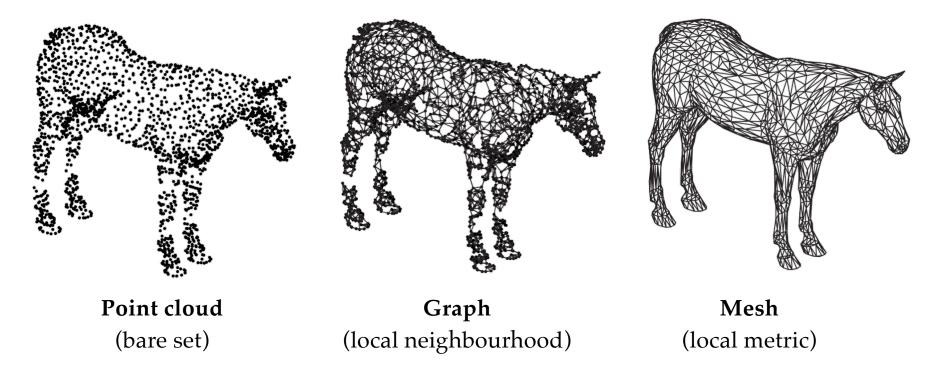
Translation + Rotation + Reflection



GEOMETRIC DOMAINS

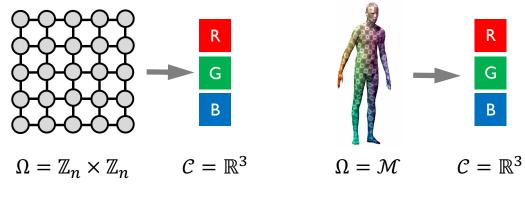
Geometric domains

• **Domain** $\Omega = \text{set} + \text{some structure}$



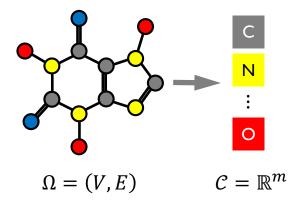
Signals on Geometric domains

- **Signal** $x \in \mathcal{X}(\Omega, \mathcal{C}) = \{x : \Omega \to \mathcal{C}\}$ "*C*-valued functions on Ω "
 - Domain Ω
 - *Vector space C* (dimensions referred to as "channels")



Image

Textured surface



Molecular graph

Signals on Geometric domains

- **Signal** $x \in \mathcal{X}(\Omega, \mathcal{C}) = \{x : \Omega \to \mathcal{C}\}$ "C-valued functions on Ω "
 - *Domain* Ω (often no vector space structure, i.e., we cannot add points on Ω)
 - *Vector space C* (dimensions referred to as "channels")
- The **space of signals** $\mathcal{X}(\Omega, C)$ is a *vector space* (possibly infinite-dimensional)
 - We can add signals and multiply them by a scalar

Signals on Geometric domains

- **Signal** $x \in \mathcal{X}(\Omega, \mathcal{C}) = \{x : \Omega \to \mathcal{C}\}$ "C-valued functions on Ω "
 - Domain Ω
 - *Vector space C* (dimensions referred to as "channels")
- The **space of signals** $X(\Omega, C)$ is a *vector space* (possibly infinite-dimensional)
- Given an *inner product* $\langle \cdot, \cdot \rangle_{\mathcal{C}}$ on \mathcal{C} and a *measure* μ on Ω , we can define an inner product on $\mathcal{X}(\Omega, \mathcal{C})$ as

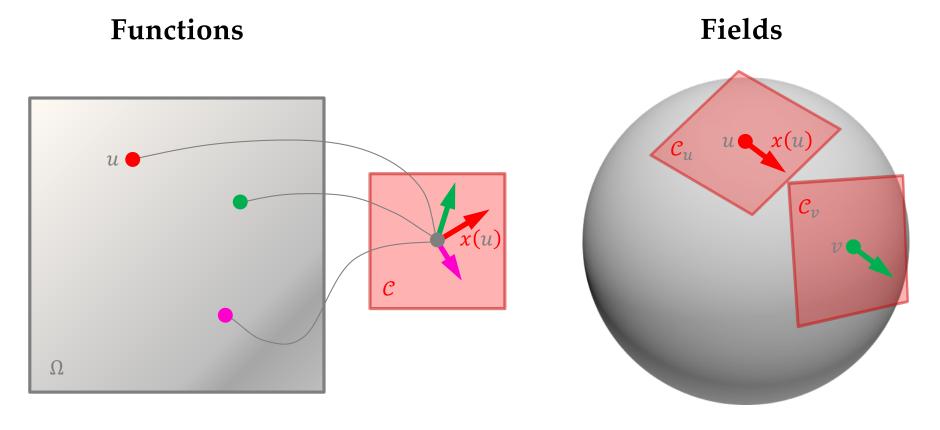
$$\langle x, y \rangle = \int_{\Omega} \langle x(u), y(u) \rangle_{\mathcal{C}} d\mu(u)$$

Exercise: prove that $\langle x, y \rangle$ defined this way satisfies the axioms of an inner product



$\mathcal C$ -valued function on Ω

 $\Omega \ni u \ \mapsto x(u) \in \ \mathcal{C}$

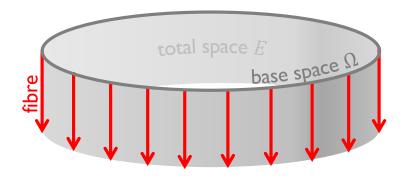


 $\mathcal{C}\text{-valued function on }\Omega$ $\Omega \ni u \ \mapsto x(u) \in \ \mathcal{C}$

 $\begin{array}{l} \mathcal{C}\text{-valued field on }\Omega\\ \Omega \ni u \ \mapsto x(u) \in \mathcal{C}_u \end{array}$

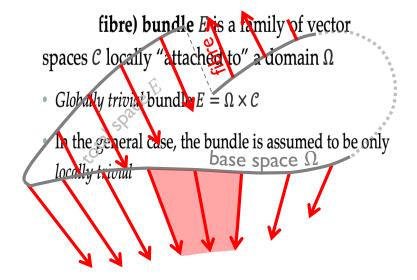
Fields on Geometric domains

- Vector (fibre) bundle *E* is a family of vector spaces *C* locally "attached to" a domain Ω
 - Globally trivial bundle $E = \Omega \times C$



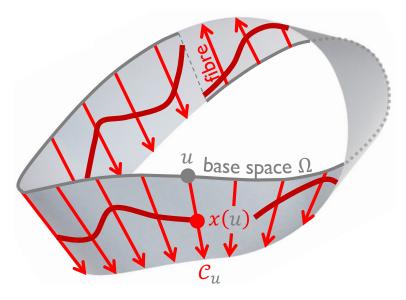
Fields on Geometric domains

- Vector (fibre) bundle *E* is a family of vector spaces *C* locally "attached to" a domain Ω
 - Globally trivial bundle $E = \Omega \times C$
 - In the general case, the bundle is assumed to be only *locally trivial*



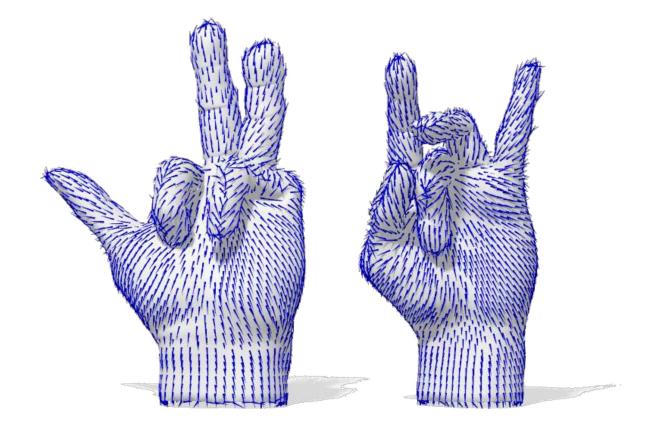
Fields on Geometric domains

- Vector (fibre) bundle *E* is a family of vector spaces *C* locally "attached to" a domain Ω
- Vector field (section of the bundle) *x*: Ω → *E* "continuously attaching to every point *u* a vector from C_u in a manner compatible with the bundle structure"



Given an inner product (·,·)_u on C_u (Riemannian metric in differential geometry) we can define an inner product between vector fields as

$$\langle x, y \rangle = \int_{\Omega} \langle x(u), y(u) \rangle_u \, \mathrm{d}\mu(u)$$



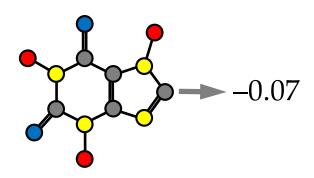
Tangent vector fields on a manifold

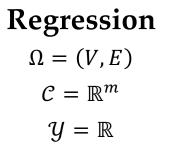
Domain as a Signal

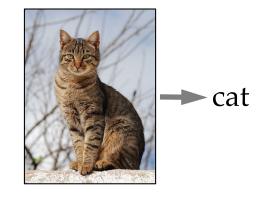
- In some cases, there is no given signal defined on the domain Ω
- The *structure* of the domain can be considered as a signal, e.g.
 - Adjacency matrix of a graph G = (V, E) is a signal on $V \times V$
 - Metric tensor of a Riemannian manifold $\mathcal M$ is a signal on $\mathcal M$

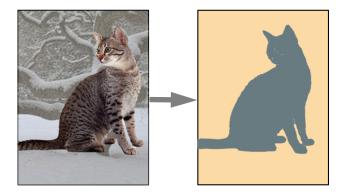
Functions on Signals defined on Geometric domains

• Label function $f \in \mathcal{F}(\mathcal{X}(\Omega, \mathcal{C})) = \{f : \mathcal{X}(\Omega, \mathcal{C}) \to \mathcal{Y}\}$





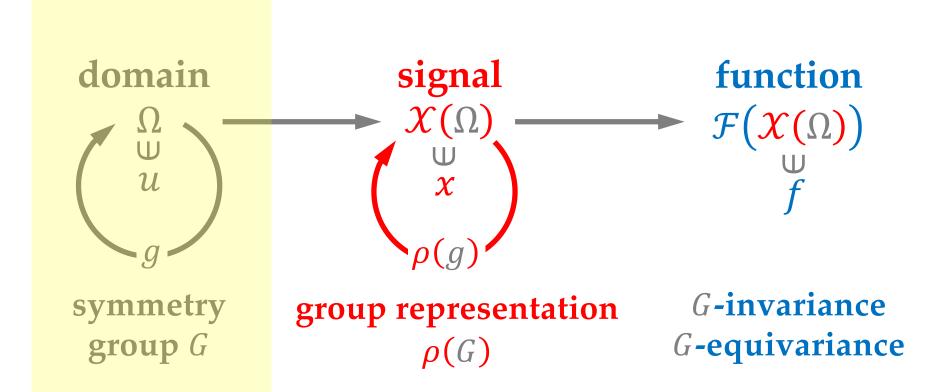




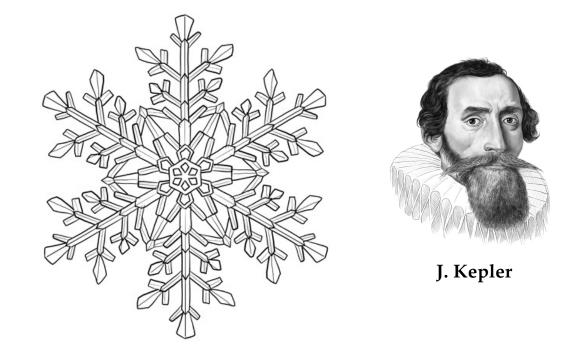
Classification $\Omega = \mathbb{Z}_n \times \mathbb{Z}_n$ $\mathcal{C} = \mathbb{R}^3$ $\mathcal{Y} = \{1, \dots, K\}$

Structured prediction

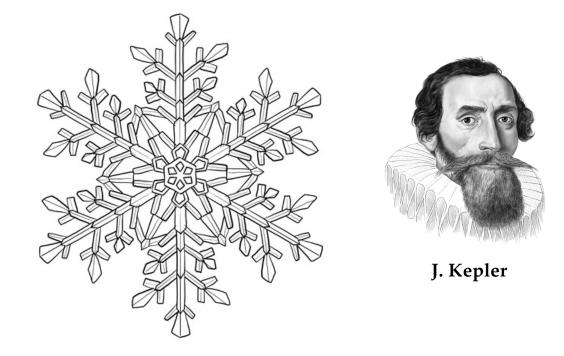
$$\Omega = \mathbb{Z}_n \times \mathbb{Z}_n$$
$$\mathcal{C} = \mathbb{R}^3$$
$$\mathcal{Y} = \mathcal{X}(\mathbb{Z}_n \times \mathbb{Z}_n, \{0, 1\})$$



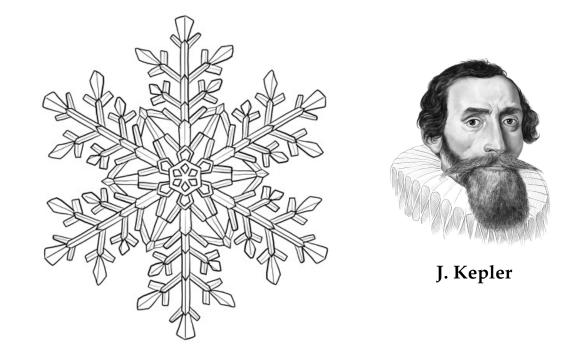
SYMMETRY GROUPS



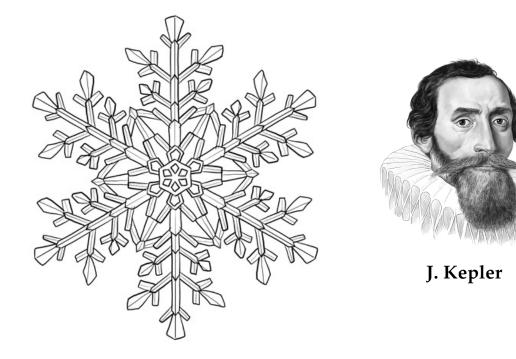
"a transformation of an object leaving it unchanged"



"element of a symmetry group"

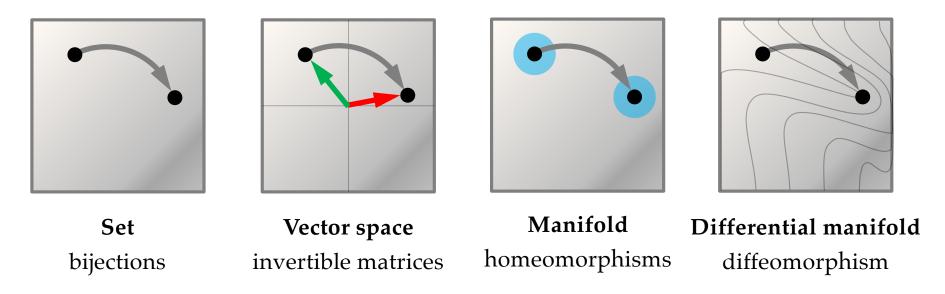


"invertible structure-preserving map (isomorphism) from the object to itself"



"automorphism"

Examples of structure-preserving maps

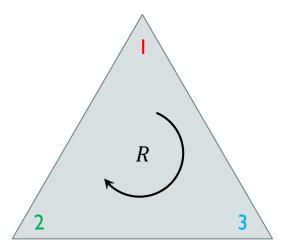


Reminder:

Homeomorphism is a bijective continuous function (bicontinuous). It preserves topological structure.

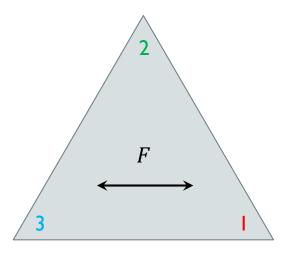
Diffeomorphism is a bijective differentiable function with differentiable inverse. It preserves differential structure on manifolds.

Symmetry of a triangle

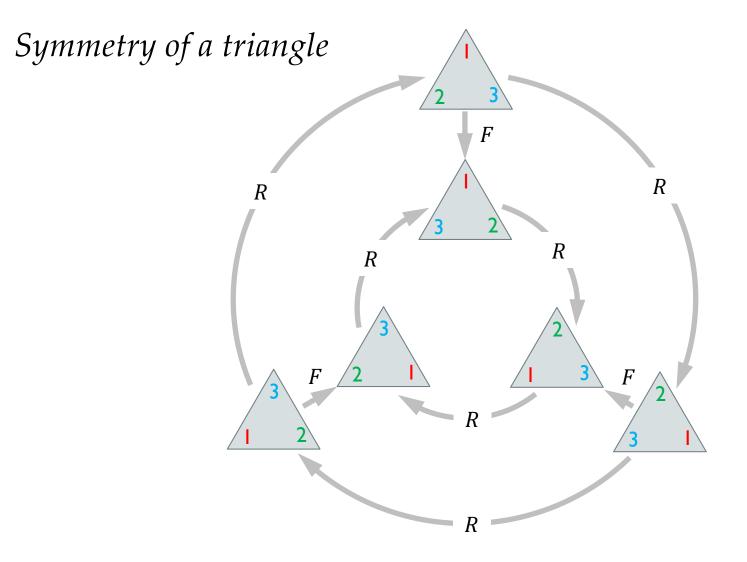


rotation by 120°

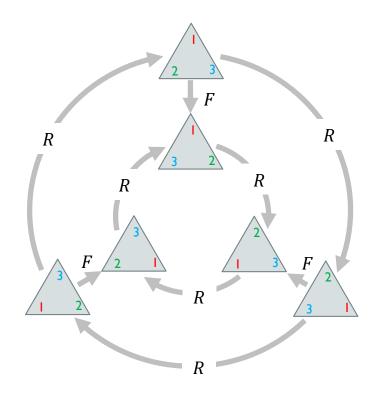
Symmetry of a triangle



reflection



Symmetry of a triangle



o	Ι	R	R^2	F	FR	FR^2
Ι	Ι	R	R^2	F	FR	FR^2
R	R	R^2	Ι	FR^2	F	FR
R^2	R^2	Ι	R	FR	FR^2	F
F	F	FR	FR^2	Ι	R	R^2
FR	FR	FR^2	F	R^2	Ι	R
FR^2	FR^2	F	FR	R	R^2	Ι

Cayley graph

Cayley table

Groups

A **group** (*G*,*) is a set *G* together with binary operation $*: G \times G \rightarrow G$ (denoted by juxtaposition g * h = gh for brevity) satisfying the following axioms:

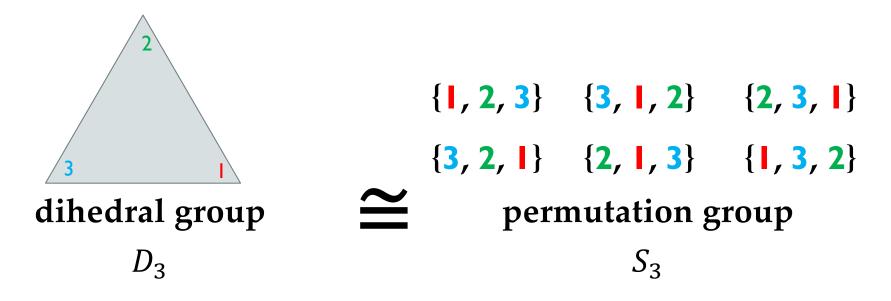
• Associativity:	$(gh)k = g(hk)$ for all $g, h, k \in G$
• Identity:	$\exists ! e \in G$ satisfying $eg = ge = g$ for all $g \in G$
• Inverse:	$\exists ! g^{-1} \in G$ for each $g \in G$ satisfying $g^{-1}g = gg^{-1}$

- *Closure* ($gh \in G$) follows from definition
- Not necessarily commutative (i.e., $gh \neq hg$). Commutative groups are called *Abelian*

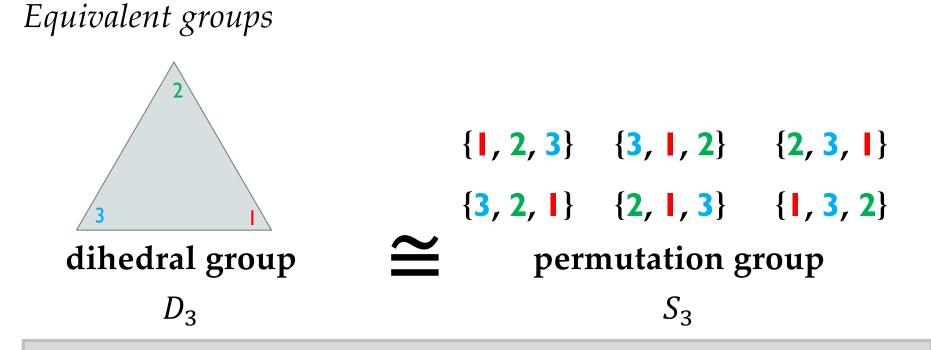
= e

- Groups can be finite, infinite, discrete, or continuous.
- *Lie groups* such as 3D rotations are smooth manifolds (we can do calculus on them)

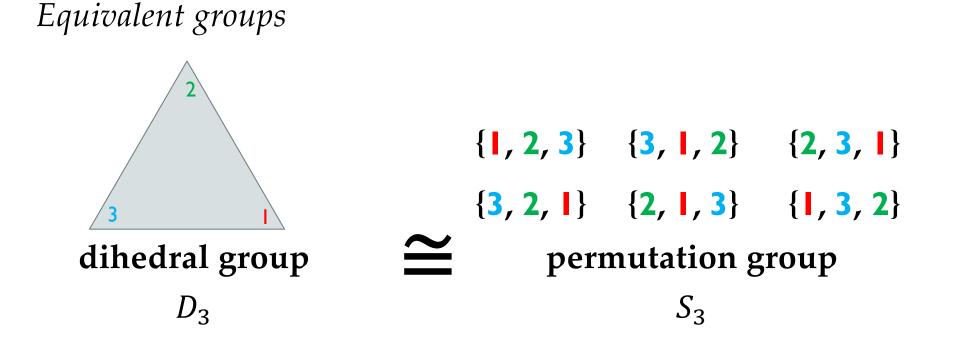
Equivalent groups



The group abstracts out the objects themselves and captures only how they compose



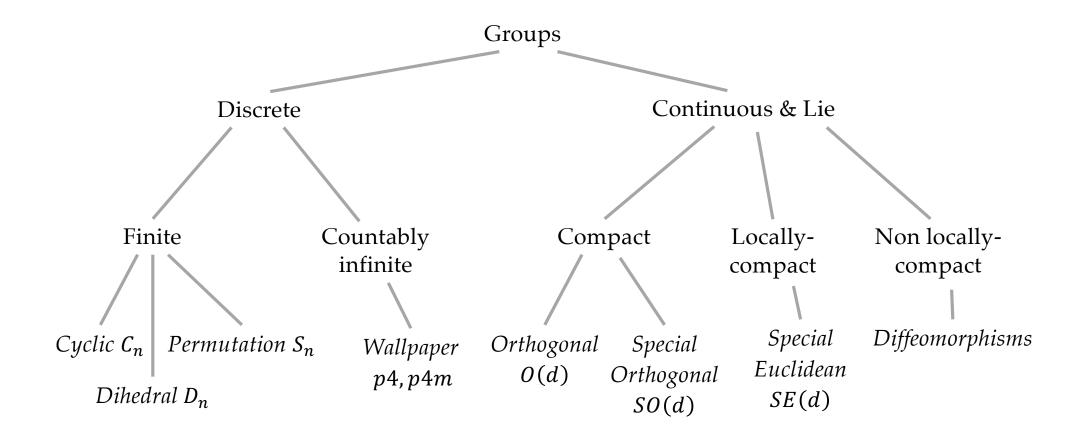
Two groups (*G*,*) and (*H*,•) are **isomorphic** (denoted by (*G*,*) \cong (*H*,•)) if there exists a bijection $\varphi: G \to H$ (called **group isomorphism**) satisfying for all $g, h \in G$ $\varphi(g * h) = \varphi(g) \circ \varphi(h)$

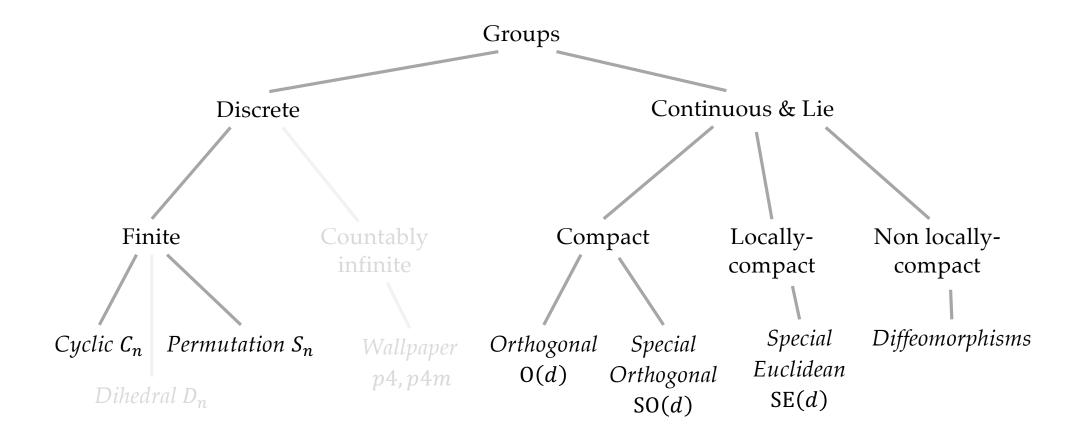


Group homomorphism (don't confuse with *homeomorphism*, which is a map between topological spaces) is a map $\varphi: (G,*) \to (H,\circ)$ satisfying $\varphi(g*h) = \varphi(g) \circ \varphi(h)$. It preserves group operations but not necessarily group structure.

Group isomorphism is a bijective group homomorphism. It preserves group structure.

Exercise: prove that group homomorphism maps the identity of G to the identity of H

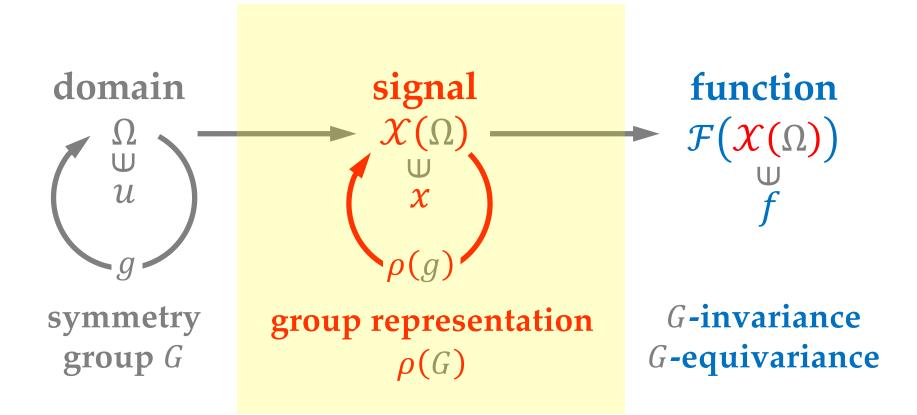




Examples of Important groups

- **Permutation** (symmetric) group *S_n*: reorder a set of *n* elements
- **Cyclic** group *C_n*: shift the order of *n* elements by one position modulo *n*
- **Groups of matrices** of size *d*×*d* with matrix multiplication operation
 - **General linear group** GL(*d*): invertible matrices
 - **Special linear group** SL(*d*): volume- and orientation-preserving matrices (det = 1)
 - **Orthogonal group** 0(*d*): angle-preserving (orthogonal) matrices
 - **Special orthogonal group** SO(*d*): volume-, orientation- and angle-preserving matrices

Exercise: show the above groups indeed satisfy the group axioms



GROUP ACTIONS & REPRESENTATIONS

Group actions on objects

Point in a plane

Image (function)

Vector field

The type of an object can be defined by the way it transforms by a group

Group action

Let *G* be a group and *X* a set. A **(left)** group action of *G* on *X* (often denoted $gx = \alpha(g, x)$) is a mapping of the form $\alpha : G \times X \to X$ satisfying

- *Identity:* $\alpha(e, x) = x$ for all $x \in X$
- Composition: $\alpha(gh, x) = \alpha(g, \alpha(h, x))$ for all $g, h \in G$ and $x \in X$

Group representation

A **representation** of *G* on *X* is a mapping of the form $\rho: G \to \{f: X \to X\}$ that assigns to each $g \in G$ a map $\rho(g): X \to X$ satisfying

- Identity: $\rho(e) = id$
- Composition: $\rho(gh) = \rho(g) \circ \rho(h)$ for all $g, h \in G$
- Given a group action α , a representation can be defined as $\rho(g)x = \alpha(g, x)$
- Preserves *positive relations* (e.g., $g^{-1}g = gg^{-1} = e$) that hold in the group *G*
- *Negative relations* (of the form $gh \neq k$) may not be preserved
- Trivial representation $\rho \equiv id$
- *Faithful representation* is *injective* $(g \neq h \Rightarrow \rho(g) \neq \rho(h))$ and preserves negative relations
- Additional structure of ρ (e.g. smoothness if *G* is a Lie group)

Linear Group representation

A **linear representation** of *G* on a vector space *X* is group homomorphism $\rho: G \to GL(X)$ that assigns to each $g \in G$ an **invertible linear** map $\rho(g): X \to X$ satisfying

 $\rho(gh) = \rho(g)\rho(h)$ for all $g, h \in G$

- dim(*X*) is called the dimension of the representation
- In finite-dimensional cases, ρ can be represented by *matrices*
- This turns group theory into linear algebra
- Efficient implementation on standard hardware

Linear Group representation

A *d*-dimensional (linear) representation of *G* is a map $\rho: G \to \mathbb{R}^{d \times d}$ assigning to each $g \in G$ an invertible matrix $\rho(g) \in \mathbb{R}^{n \times n}$ satisfying $\rho(gh) = \rho(g)\rho(h)$ for all $g, h \in G$.

Exercise I: show that $\rho(e) = I$.

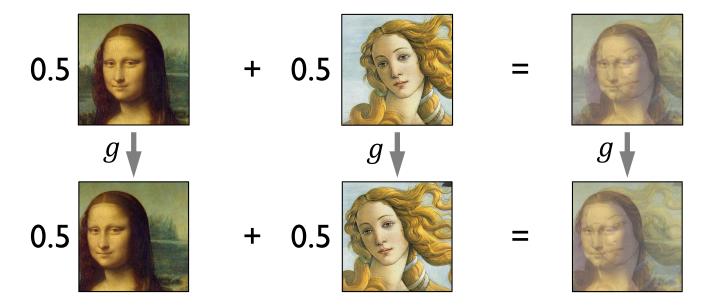
Note: such a representation is not unique! Given an invertible matrix **A** ("change of basis"), we can define a new representation $\bar{\rho}(g) = \mathbf{A}\rho(g)\mathbf{A}^{-1}$.

Exercise II: verify that $\bar{\rho}$ is indeed a representation

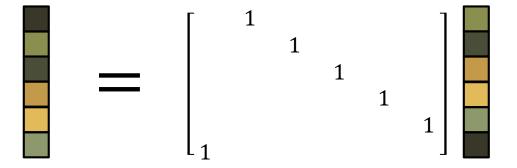
Group actions on Signals defined on geometric Domains

Given a group *G* acting on a **domain** Ω , we automatically obtain an action of *G* on the space of signals $X(\Omega)$ through the **regular representation** $(\rho(g)x)(u) = x(g^{-1}u)$

Exercise: prove that this representation is linear

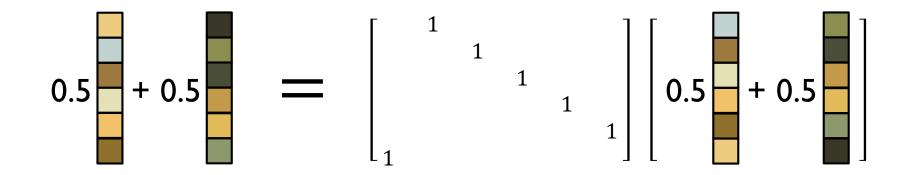


Intuition

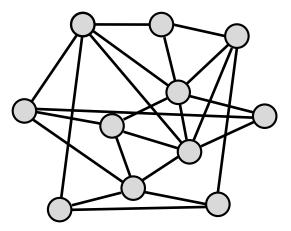


Note: a 2D shift can be represented as tensor (Kronecker) product $(S \otimes S)$ vec(X) =vec (SXS^T)

Intuition

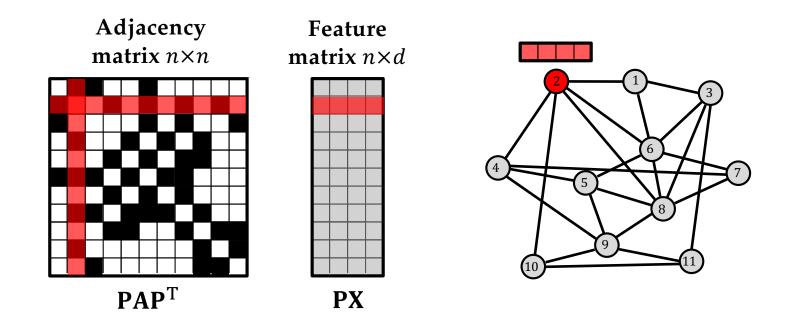


Example: Symmetries of Graphs



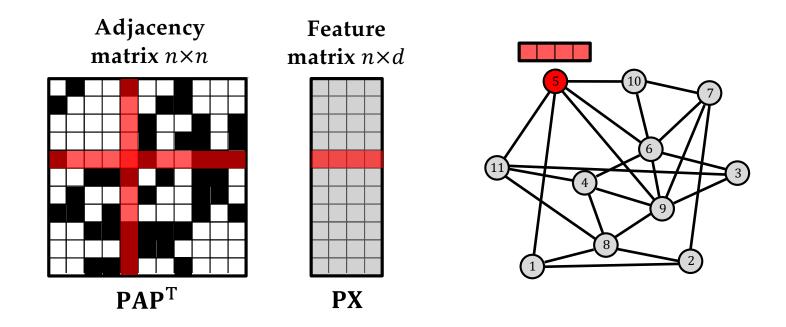
• A graph is an abstract object

Example: Symmetries of Graphs



- A graph is an abstract object
- Its *description* (adjacency/feature matrix) has "extrinsic" properties (order of nodes)

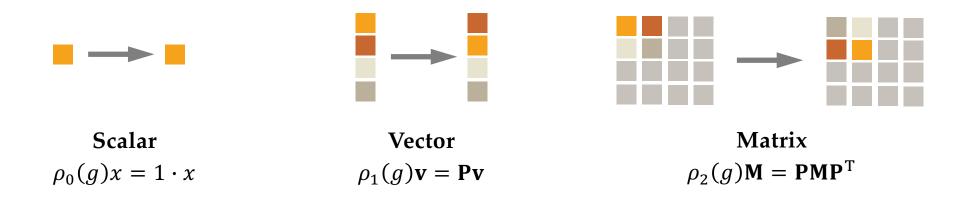
Example: Symmetries of Graphs



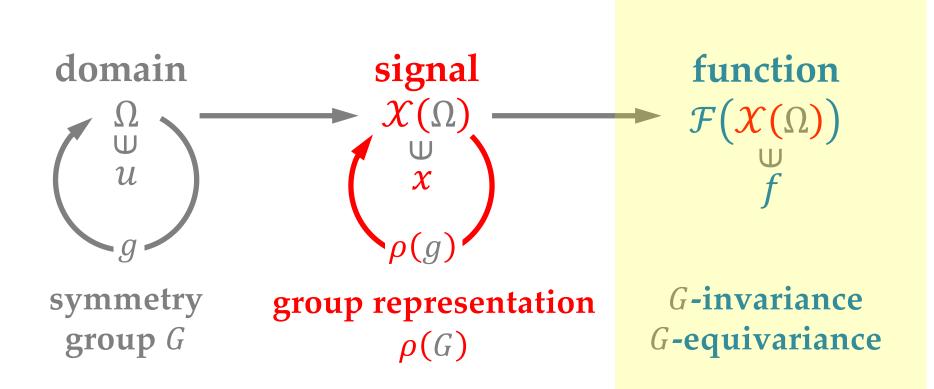
- A graph is an abstract object
- Its *description* (adjacency/feature matrix) has "extrinsic" properties (order of nodes)

Different representations of the permutation group on Graphs

- **Domain**: set of *n* graph vertices $\Omega = \{1, ..., n\}$
- **Group:** permutations $G = S_n$



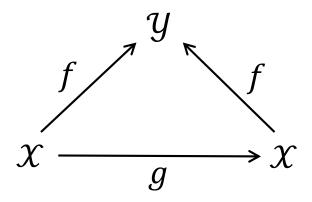
Exercise: verify that each of these are valid group representations

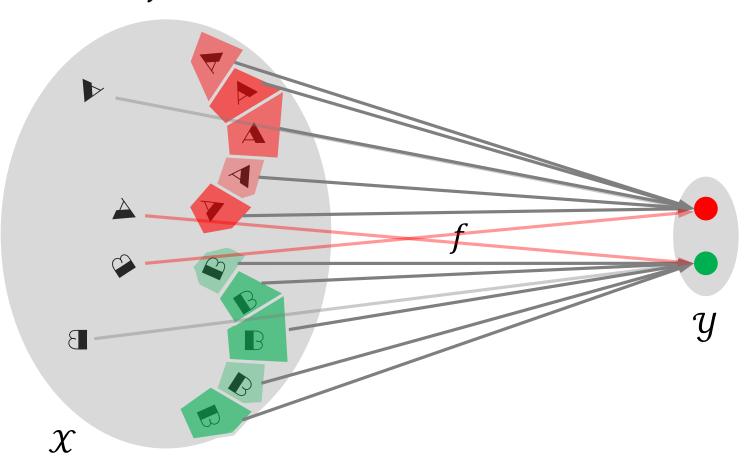


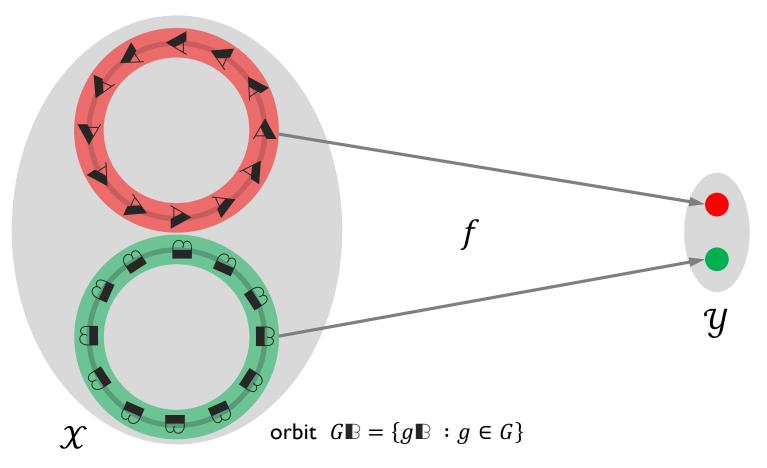
SYMMETRY IN LEARNING

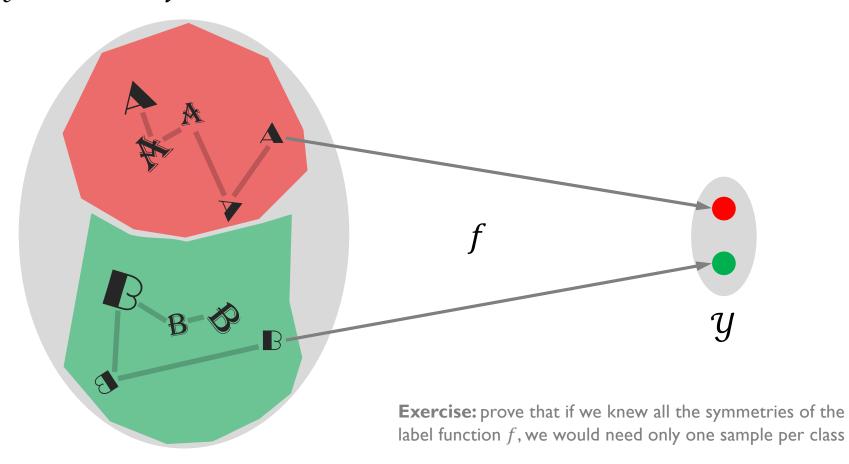
- **Label function** $f: \mathcal{X} \to \mathcal{Y}$ e.g., classification ($\mathcal{Y} = \{1, ..., K\}$)
- **Symmetry of a label function** is an invertible label-preserving map $g: \mathcal{X} \to \mathcal{X}$, i.e.

$$(f \circ g)(x) = f(x)$$
 for all $x \in \mathcal{X}$



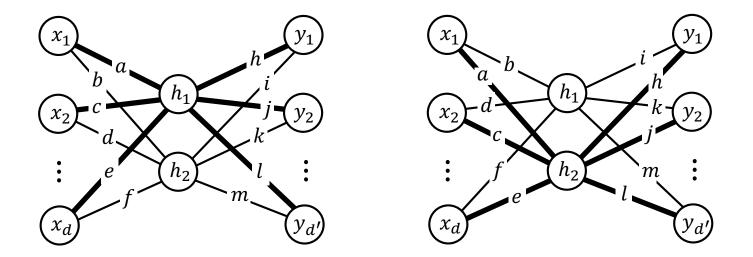






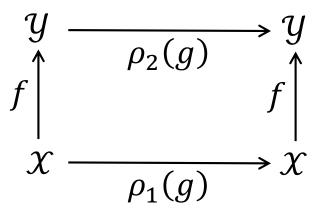
Symmetries of the Weights

- Let $f_{\theta}: \mathcal{X} \times \Theta \to \mathcal{Y}$ be a parametric model (neural network)
- A transformation $h: \Theta \to \Theta$ is a **symmetry of the weights** if, for all $x \in \mathcal{X}$ and $\theta \in \Theta$ $f_{h\theta}(x) = f_{\theta}(x)$



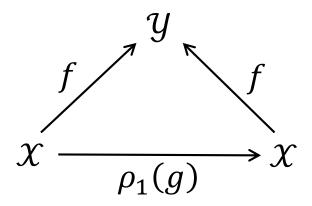
Equivariance

Let $f: \mathcal{X} \to \mathcal{Y}$ and G a group acting on \mathcal{X} and \mathcal{Y} through representation ρ_1 and ρ_2 , respectively. Then, f is G-equivariant if for all $g \in G$ $f(\rho_1(g)x) = \rho_2(g)f(x)$

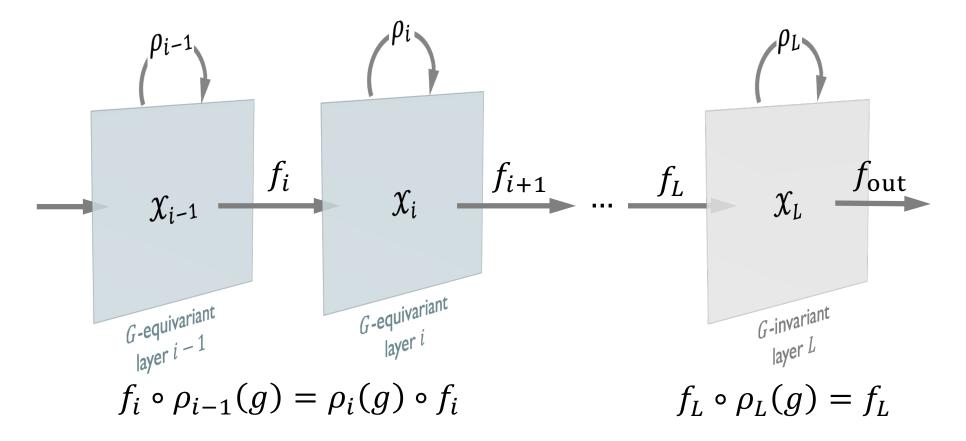


Invariance: special case of Equivariance with trivial representation

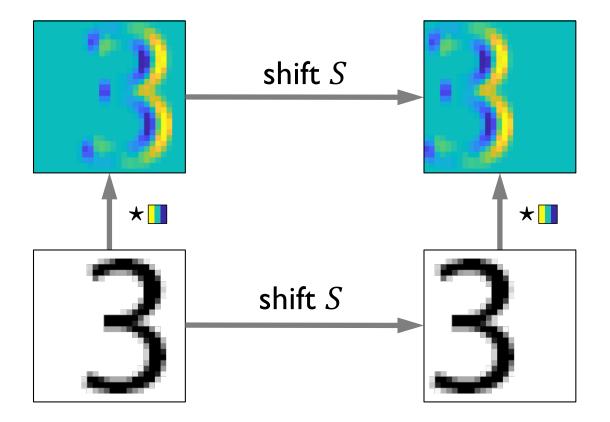
Let $f: \mathcal{X} \to \mathcal{Y}$ and G a group acting on \mathcal{X} and \mathcal{Y} through representation ρ_1 and $\rho_2 = \text{id}$, respectively. Then, f is G-invariant if for all $g \in G$ $f(\rho_1(g)x) = f(x)$

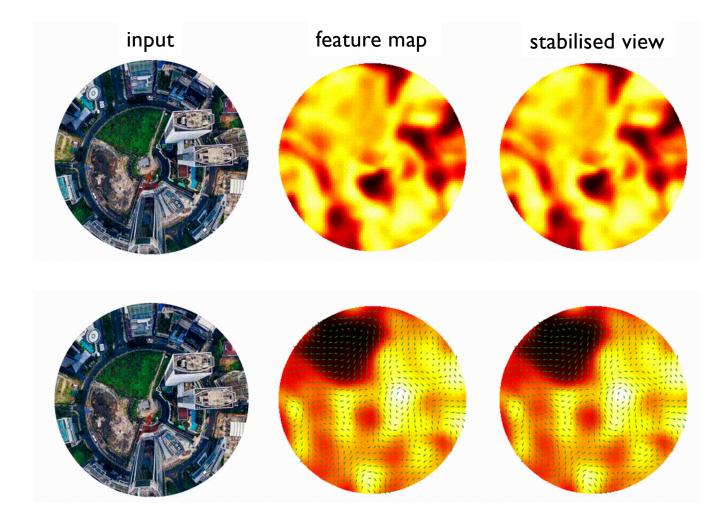


Geometric Deep Learning Blueprint (so far)



Example: Convolutional Neural Networks





CNN

Rotationequivariant CNN

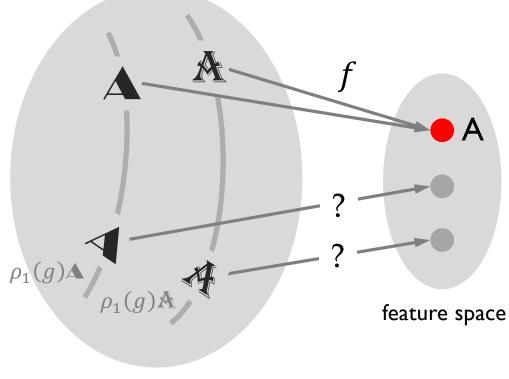
Weiler, Cesa 2019

Examples of equivariance in Geometric Deep Learning

Domain Ω:	Grid	Sphere	Manifold / Mesh
Group:	Translation (Rotation, Reflection)	SO(3)	Gauge transformations e.g. SO(2)

Image: M. Weiler

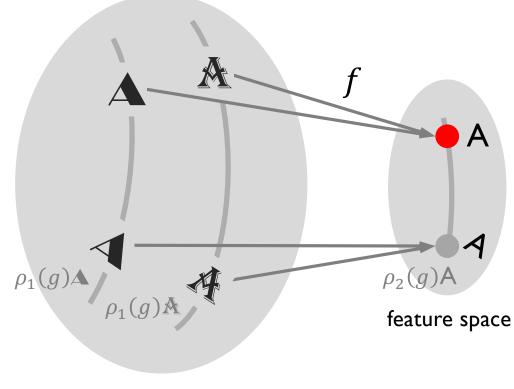
Equivariance = *Symmetry-consistent generalisation*



$$f(\rho_1(g)\mathbf{A}) = \rho_2(g) f(\mathbf{A})$$
$$f(\rho_1(g)\mathbf{A}) = \rho_2(g) f(\mathbf{A})$$

input space

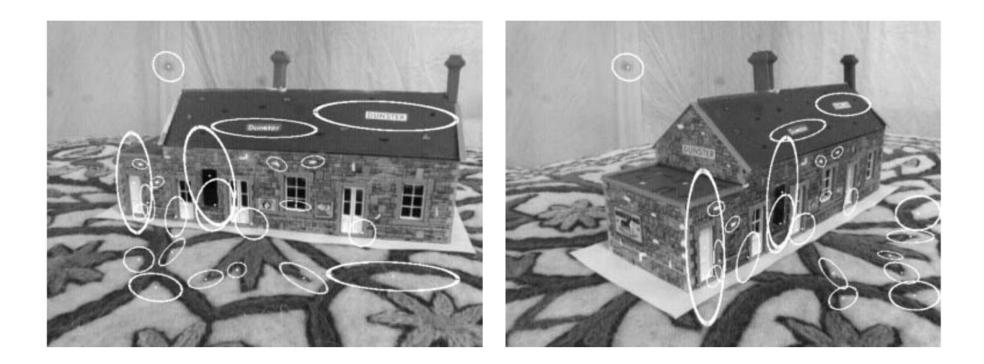
Equivariance = *Symmetry-consistent generalisation*



$$\begin{split} f(\rho_1(g)\mathbf{A}) &= \rho_2(g) \begin{array}{c} f(\mathbf{A}) \\ & \parallel \\ f(\rho_1(g)\mathbf{A}) &= \rho_2(g) \begin{array}{c} f(\mathbf{A}) \\ \end{array} \end{split}$$

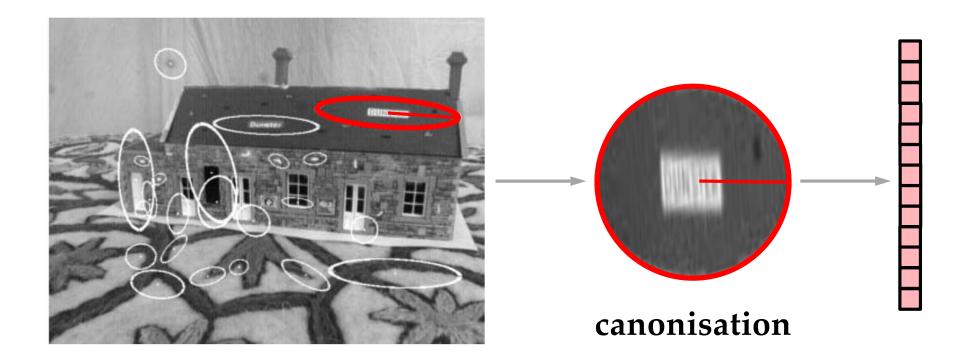
input space

Canonisation

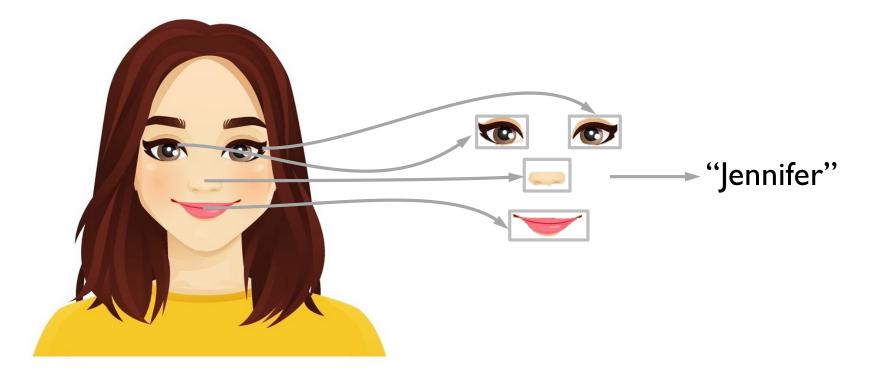


Mikolajczyk, Schmid 2004

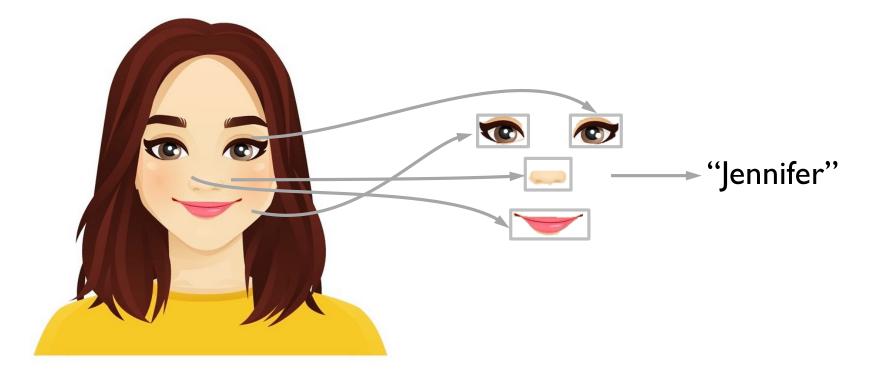
Canonisation



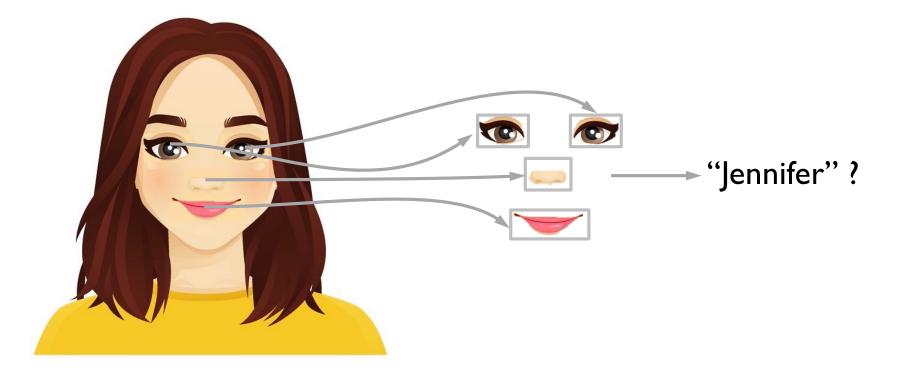
Canonisation vs Equivariance



Canonisation vs Equivariance



Canonisation vs Equivariance



Takeaways

- *Symmetries* are transformations leaving the object *invariant*
- In general ML, we care about symmetries of the *label function* and its *parameters* (neural network weights)
- In Geometric Deep Learning, we care about symmetries of a *geometric domain*, signals on which are inputs into a neural network
- Symmetry is exploited in deep learning in the form of *equivariant neural networks*
- In an equivariant neural network, each feature space is associated with a *group representation* and each layer is equivariant w.r.t. this representation
- *Invariance* is a special case of equivariance where the trivial representation is used
- Next lecture: learning under Invariance and Scale Separation geometric priors

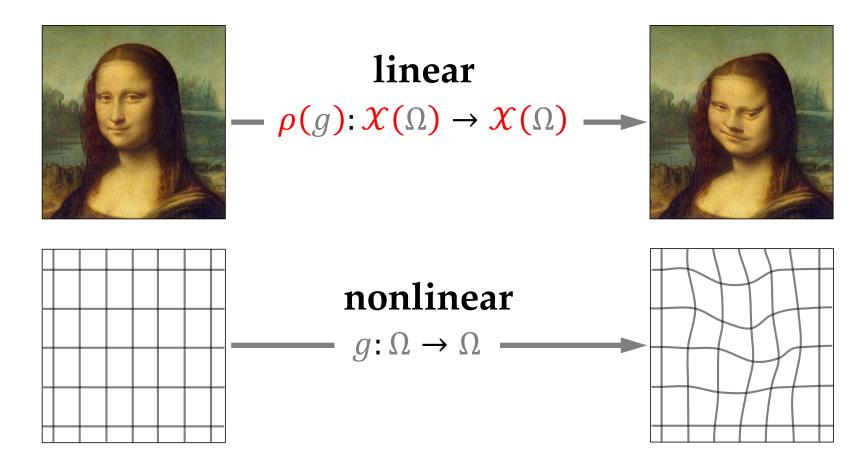
Key Concepts

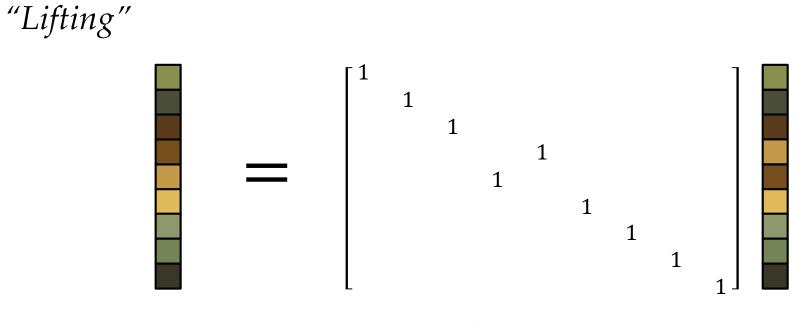
- Symmetry Groups
- Group Actions and Representations
- Invariance and Equivariance

Outline

- Group theory provides the math language to describe symmetries in ML problems
- *Equivariant neural networks* are constructed such that each layer is equivariant w.r.t. the action of a symmetry group
- Symmetry prior leads to a new model class that however on its own may not tame the curse of dimensionality
- Symmetry prior is often combined with *Scale Separation*, typically implemented in the form of *pooling*
- These two geometric priors are the core of Geometric Deep Learning, a principled blueprint of highly expressive architectures that defy the curse of dimensionality

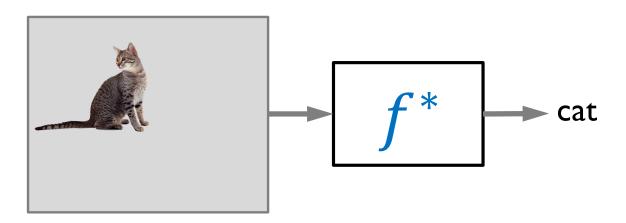
"Lifting"





"pixel permutation"

Invariant learning tasks



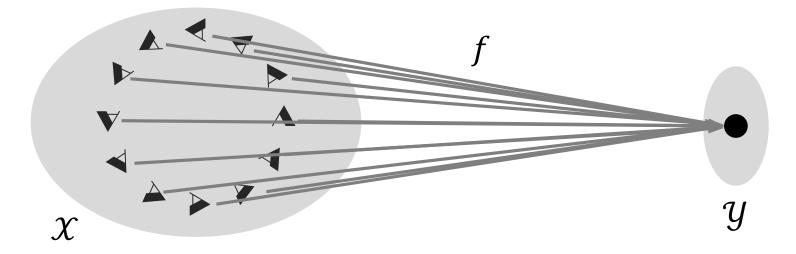
The function is *a priori* assumed to be shift-invariant, only one sample necessary per image

Data augmentation

The function is generic,

training set contains multiple shifted versions of each image

Group-invariant function classes



• *G*-invariant model class

 $\mathcal{F}_{G} = \{ f \colon \mathcal{X} \to \mathcal{Y} \text{ s.t. } f(gx) = f(x) \ \forall x \in \mathcal{X}, g \in G \}$

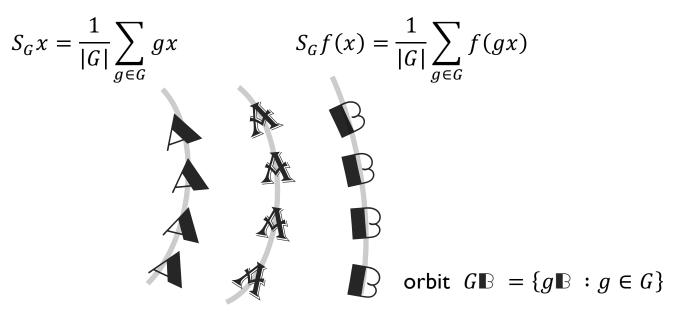
- How to leverage invariant function classes in learning?
- Is this generally sufficient to break the curse of dimensionality?

- Assume *G* is discrete of finite size
- **Group averaging** (or **smoothing**) **operator** S_G (defined with abuse of notation as either $S_G: \mathcal{X} \to \mathcal{X}$ or $S_G: \mathcal{F}(\mathcal{X}) \to \mathcal{F}(\mathcal{X})$) averaging along group orbits

$$S_G x = \frac{1}{|G|} \sum_{g \in G} gx \qquad \qquad S_G f(x) = \frac{1}{|G|} \sum_{g \in G} f(gx)$$

Note: More generally, we can define $S_G f(x) = \frac{1}{\mu(G)} \int_G f(gx) d\mu(g)$, where μ is the Haar measure on the group

- Assume *G* is discrete of finite size
- **Group averaging** (or **smoothing**) **operator** S_G (defined with abuse of notation as either $S_G: \mathcal{X} \to \mathcal{X}$ or $S_G: \mathcal{F}(\mathcal{X}) \to \mathcal{F}(\mathcal{X})$) averaging along group orbits



- Assume *G* is discrete of finite size
- **Group averaging** (or **smoothing**) **operator** S_G (defined with abuse of notation as either $S_G: \mathcal{X} \to \mathcal{X}$ or $S_G: \mathcal{F}(\mathcal{X}) \to \mathcal{F}(\mathcal{X})$) averaging along group orbits

$$S_G x = \frac{1}{|G|} \sum_{g \in G} gx \qquad \qquad S_G f(x) = \frac{1}{|G|} \sum_{g \in G} f(gx)$$

Assume *f* is *G*-invariant. Then, f(Gx) = const.

- Assume *G* is discrete of finite size
- **Group averaging** (or **smoothing**) **operator** S_G (defined with abuse of notation as either $S_G: \mathcal{X} \to \mathcal{X}$ or $S_G: \mathcal{F}(\mathcal{X}) \to \mathcal{F}(\mathcal{X})$) averaging along group orbits

$$S_{G}x = \frac{1}{|G|} \sum_{g \in G} gx \qquad S_{G}f(x) = \frac{1}{|G|} \sum_{g \in G} f(gx)$$

Assume *f* is *G*-invariant. Then, $S_{G}f = f$.

• Given a hypothesis class \mathcal{F} , we can make it *G*-invariant by applying the group averaging operator, $S_G \mathcal{F} = \{S_G f, f \in \mathcal{F}\}$.

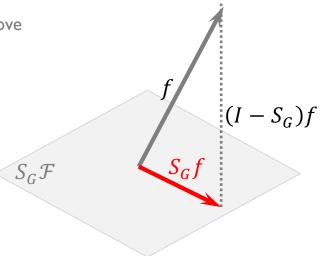
Exercise: Let $\Omega = \{1, ..., d\}$ a grid, $G = C_d$ cyclic group, and $\mathcal{F} =$ polynomials of degree k. Write $S_G \mathcal{F}$.

Learning under invariance

Approximation error is unaffected by group smoothing, i.e., $\inf_{f\in\mathcal{F}} \|f - f^*\|^2 = \inf_{f\in S_G\mathcal{F}} \|f - f^*\|^2$

• Since S_G is an orthogonal projection in L_2 : **Exercise:** prove

$$\|f - f^*\|^2 = \|S_G(f - f^*)\|^2 + \|(I - S_G)(f - f^*)\|^2$$
$$= \|S_G f - f^*\|^2 + \|(I - S_G)f\|^2$$



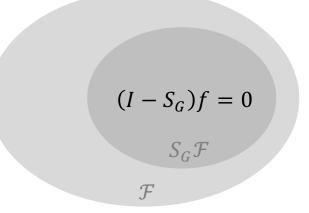
Learning under invariance

Approximation error is unaffected by group smoothing, i.e., $\inf_{f\in\mathcal{F}} \|f - f^*\|^2 = \inf_{f\in S_G\mathcal{F}} \|f - f^*\|^2$

• Since S_G is an orthogonal projection in L_2 :

$$||f - f^*||^2 = ||S_G(f - f^*)||^2 + ||(I - S_G)(f - f^*)||^2$$
$$= ||S_G f - f^*||^2 + ||(I - S_G)f||^2$$

• Statistical error is reduced... but by how much?



Learning invariant Lipschitz functions

• Consider the class of Lipschitz functions

 $\mathcal{F} = \{ f \colon \mathcal{X} \subseteq \mathbb{R}^d \to \mathbb{R} \quad \text{s.t.} \quad |f(x) - f(x')| \le \beta \|x - x'\| \quad \forall x, x' \in \mathcal{X} \}$

• Group-averaged Lipschitz class

$$S_{G}\mathcal{F} = \left\{ f: \mathcal{X} \subseteq \mathbb{R}^{d} \to \mathbb{R} \quad \text{s.t.} \quad |f(x) - f(x')| \leq \beta \inf_{g \in G} ||x - gx'|| \quad \forall x, x' \in \mathcal{X} \right\}$$

"points in nearby orbits are not
mapped too far away"

Learning invariant Lipschitz functions

Theorem: Using *G*-invariant kernel ridge regression, the generalisation error of learning a *G*-invariant *d*-dimensional Lipschitz function from *N* samples is bounded by

$$\mathbb{E}\left(R(\hat{f}) - R(f^*)\right) \lesssim (|G|N)^{-1/d}$$

- Sharp gains w.r.t. non-invariant kernels
- Group size |*G*| can be exponential in dimension
- Rate can still be dimensionality-cursed, suggesting invariance alone is insufficient

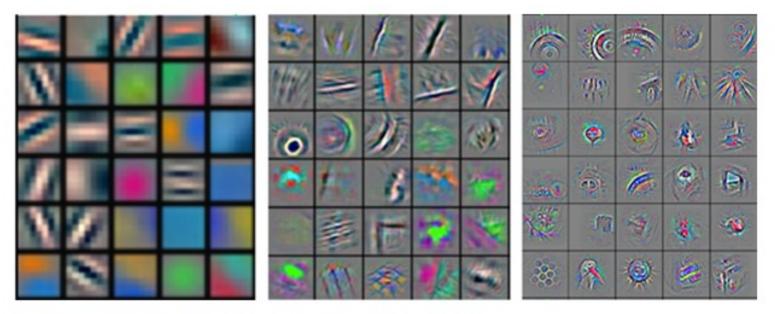
Bietti, Venturi, Bruna 2021

Conclusions so far

- Using known global symmetries in hypothesis class is a *no-brainer*: guaranteed improvement in sample complexity
- Might not break the curse of dimensionality. What else is missing?
- How to build such invariant classes efficiently? I.e., we need an algorithmic recipe

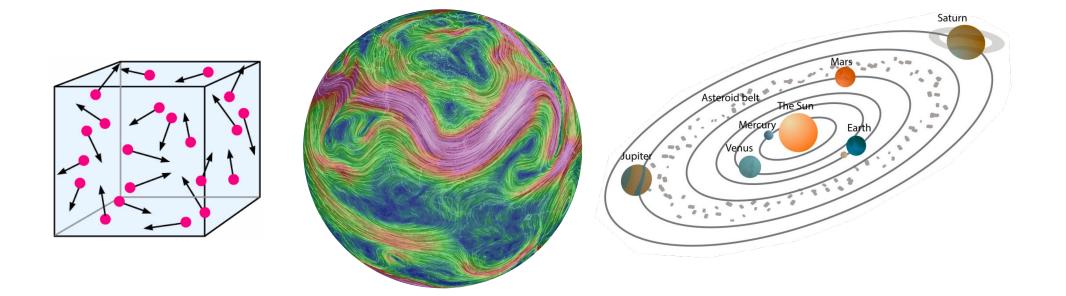
SCALE SEPARATION

Compositionality in Deep Learning



Increasingly complex features in deeper layers of a convolutional neural network

Compositionality in Physics



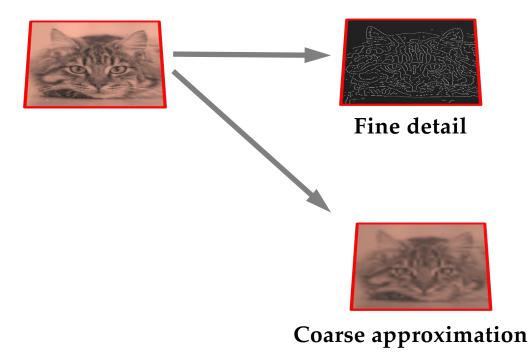
Multiresolution Analysis

Fine scale $\chi(\Omega)$ coarse Ω graining Coarse scale $\chi(\widetilde{\Omega})$ $\widetilde{\Omega}$

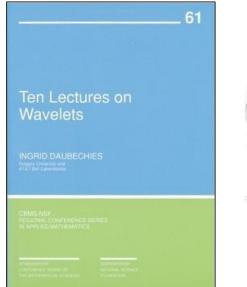
- Hierarchy of domains $... \subset \widetilde{\Omega} \subset \Omega$
- Hierarchy signal spaces $\mathcal{X}(\Omega), \mathcal{X}(\widetilde{\Omega}), ...$
- Coarse graining operator

 $P\colon \mathcal{X}(\Omega) \to \mathcal{X}\big(\widetilde{\Omega}\big)$

Multiresolution Analysis

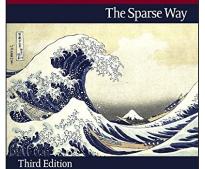


Wavelets



I. Daubechies

awavelet tour of signal processing

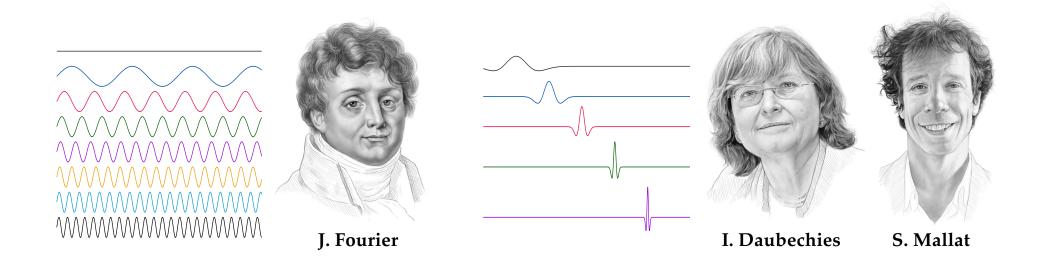


 (\mathbb{AP})

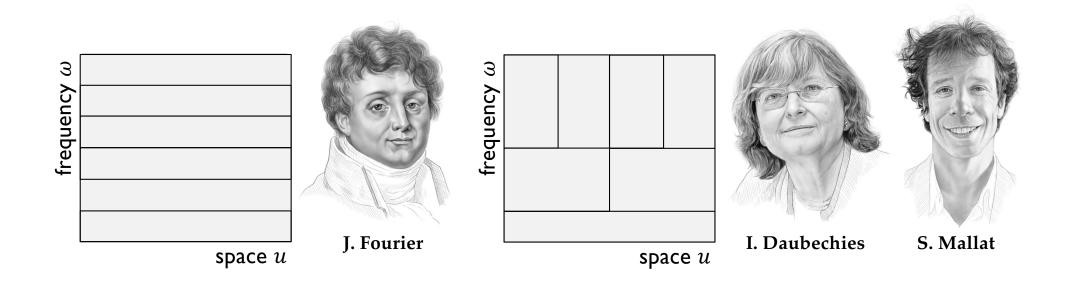
Stéphane Mallat

S. Mallat

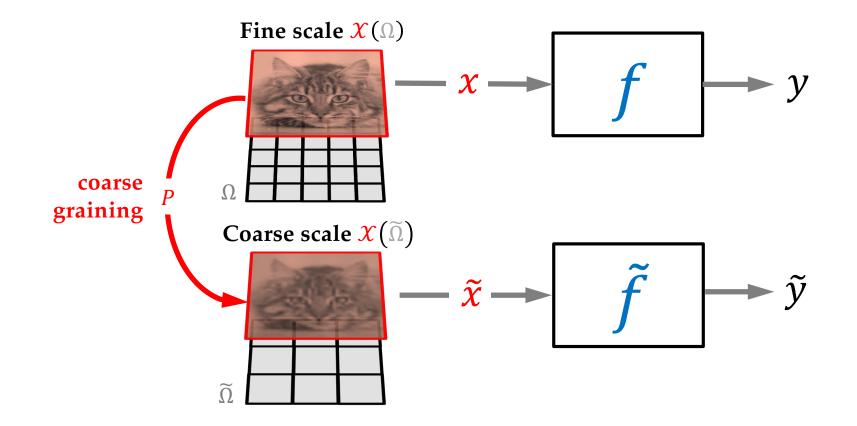
Wavelets vs Fourier

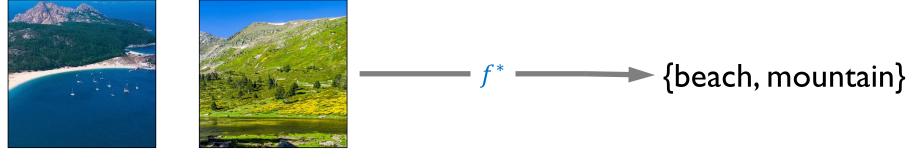


Wavelets vs Fourier

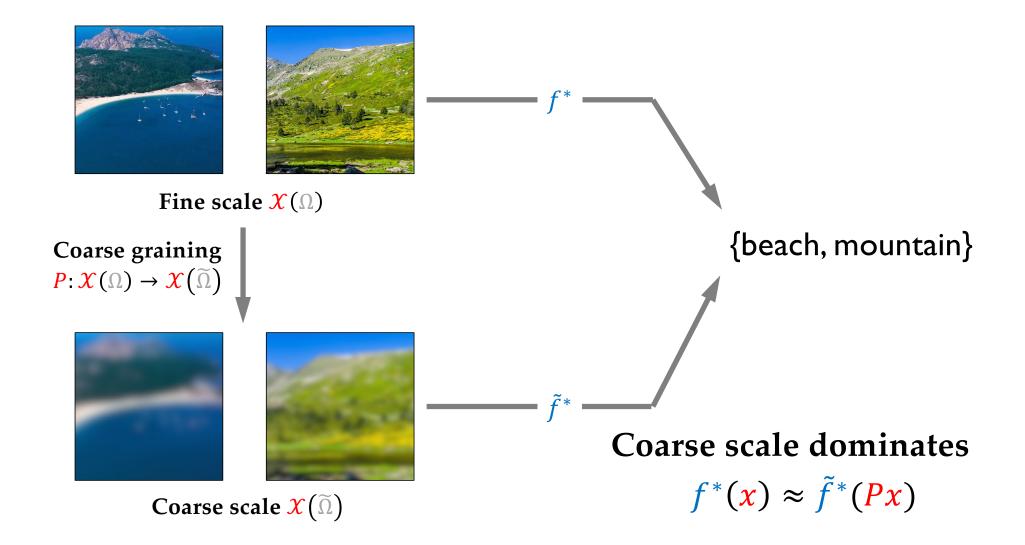


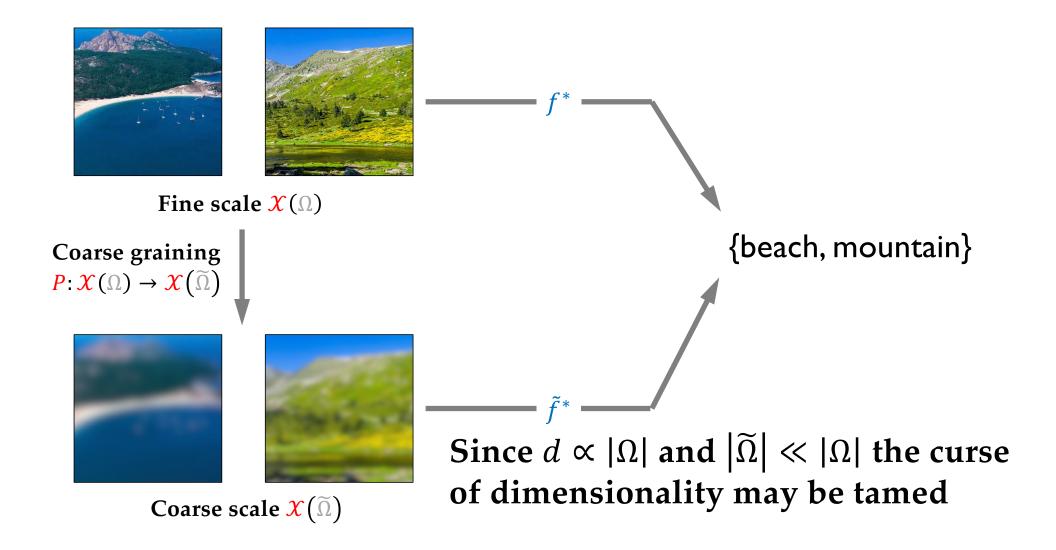
Multiresolution Analysis in ML

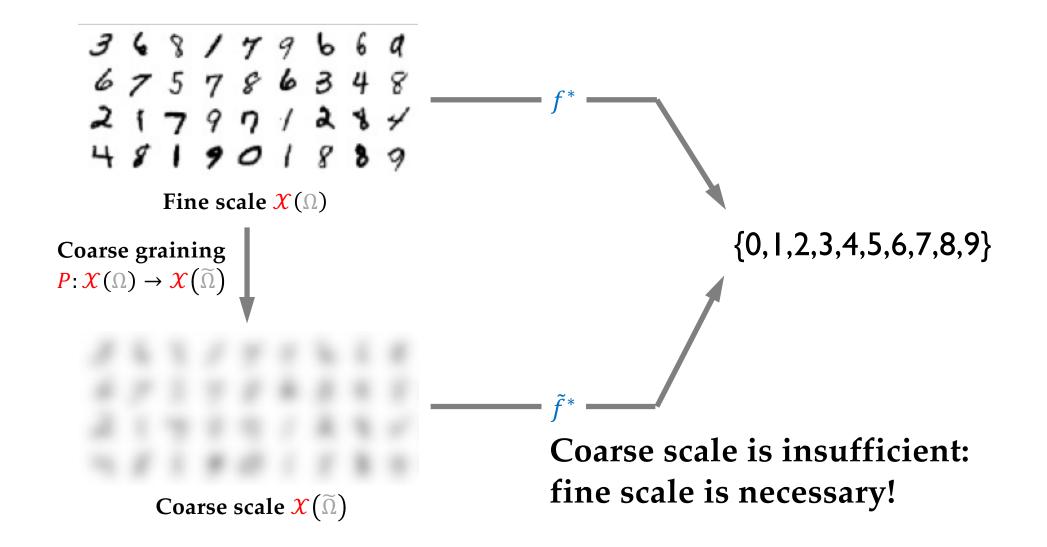


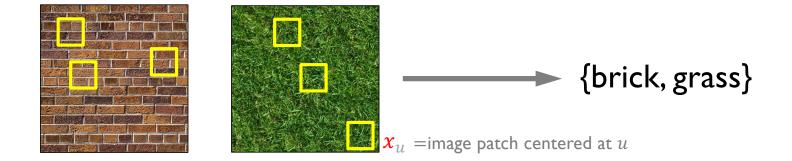


Fine scale $\boldsymbol{\chi}(\Omega)$



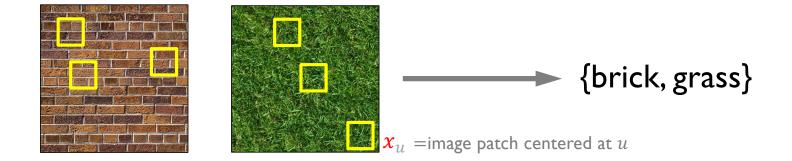






Fine scale dominates

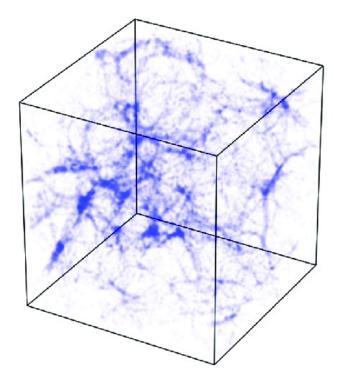
 $f^*(\mathbf{x}) \approx \sum g(\mathbf{x}_u)$ 11



Since $d \propto$ patch size, the curse of dimensionality can be avoided

Local phenomena in Physics

$$\frac{\mathrm{d}^{2}\mathbf{x}_{i}}{\mathrm{d}t^{2}} = \sum_{\substack{j=1\\j\neq i}}^{N} Gm_{j} \frac{\left(\mathbf{x}_{i} - \mathbf{x}_{j}\right)}{\left\|\mathbf{x}_{i} - \mathbf{x}_{j}\right\|^{3}}$$



N-body system

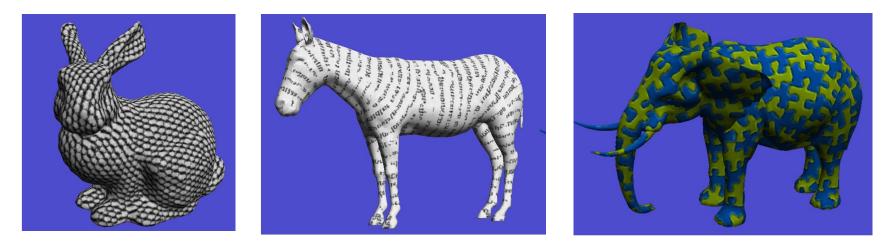
Local vs Global

88

ally -

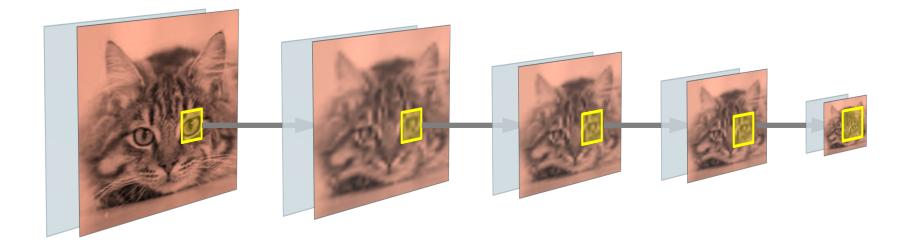
23

Local vs Global

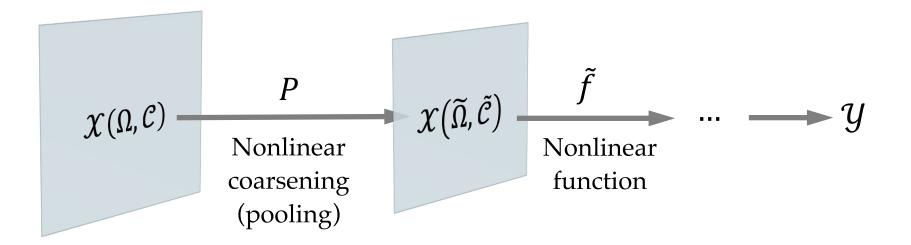


Local patches do not convey information about global structure

Multiscale compositional priors

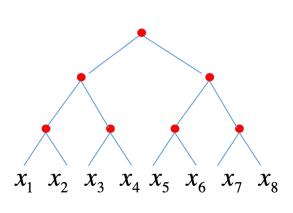


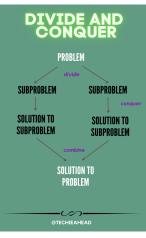
Multiscale compositional priors

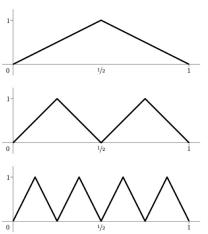


Benefits of composition

- Provable approximation, estimation, and computational benefits in specific contexts
- General structure of multiscale hypothesis spaces is still not completely understood theoretically
- Combining Symmetry and Scale Separation priors gives powerful model from first principles







Telgarsky 2015; Cohen & Shashua 2016

THE BLUEPRINT

Combining Invariance with Scale Separation

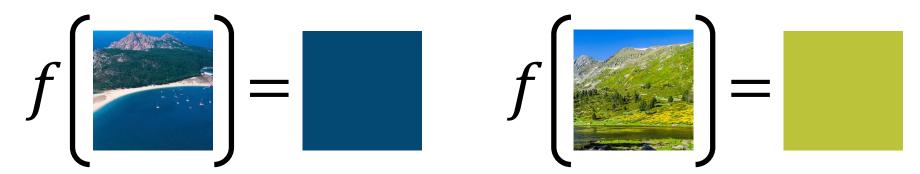
- Our hypothesis class wish list:
 - Group invariance
 - Multiscale structure
 - Expressivity
- What neural network architecture can satisfy these desiderata?

Linear group invariants

Let $f: \mathcal{X} \to \mathbb{R}$ be **linear** *G***-invariant**. Then $f(x) = f(S_G x)$ for all $x \in \mathcal{X}$, i.e., group average is the only linear group invariant.

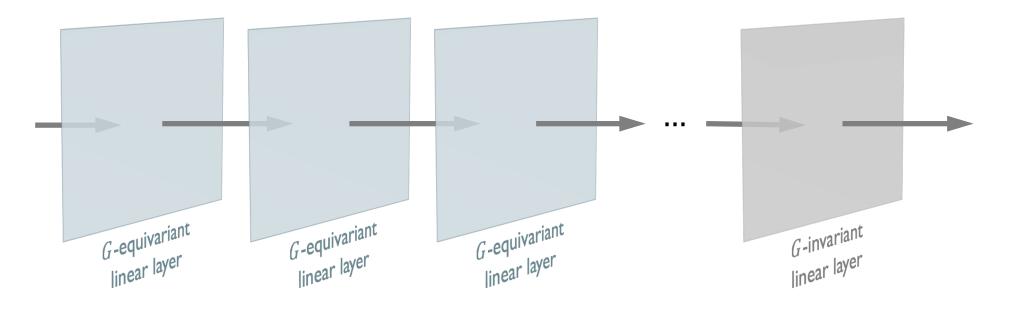
Exercise: prove

- Linear invariants are **not expressive**: f depends on x through the group average $S_G x$
- In case of images with translation, it would amount to using only the average colour!

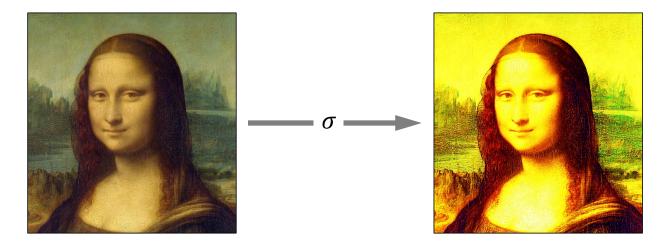


Linear group equivariants

- Assume $f: \mathcal{X} \to \mathcal{X}'$ is **linear** *G***-equivariant**, i.e., is linear and satisfies f(gx) = gf(x) for all $x \in \mathcal{X}$ and $g \in G$
- Many examples in deep learning:
 - Convolutions in CNNs (equivariant w.r.t. translation)
 - Message passing in GNNs (equivariant w.r.t. permutation)
- Can we combine linear equivariants with a linear invariant?



Element-wise nonlinearity



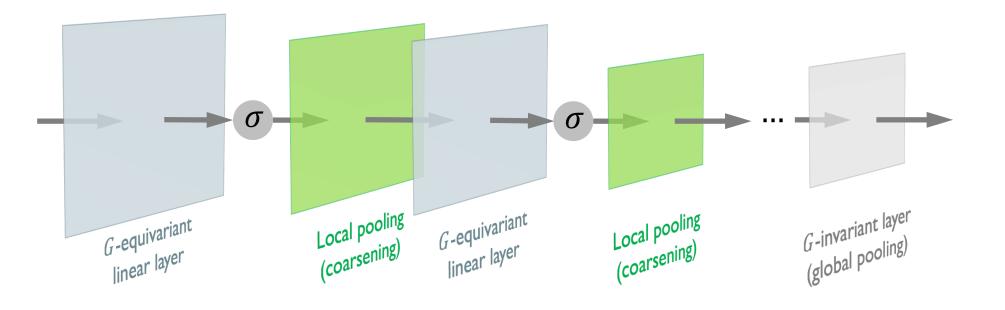
- **Element-wise nonlinear** function $\sigma: \mathcal{X} \to \mathcal{X}$ defined as $(\sigma x)(u) = \sigma(x(u))$
- Allows to make nonlinear equivariants out of linear ones by composition: if $f: \mathcal{X} \to \mathcal{X}$ is linear *G*-equivariant, then the composition $\sigma \circ f$ is nonlinear *G*-equivariant

Exercise: prove

Geometric Deep Learning Building Blocks

- **Linear equivariant:** $B: \mathcal{X}(\Omega) \to \mathcal{X}'(\Omega)$ satisfying B(gx) = gB(x)
- **Nonlinearity:** $\sigma: \mathcal{X} \to \mathcal{X}$ applied element-wise, $(\sigma x)(u) = \sigma(x(u))$
- Local pooling (coarsening): $P: \mathcal{X}(\Omega) \to \mathcal{X}(\widetilde{\Omega})$
- **Invariant layer (global pooling):** $A: \mathcal{X} \to \mathcal{Y}$ satisfying A(gx) = A(x)

Geometric Deep Learning Blueprint



Popular architectures as instances of the Blueprint

Architecture

Domain Ω

CNN Spherical CNN Intrinsic / Mesh CNN

GNN

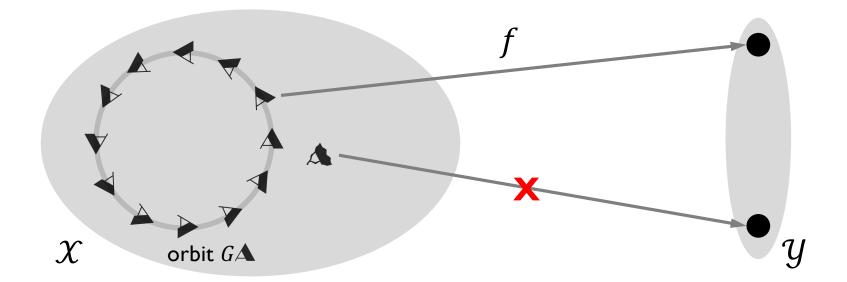
Deep Sets Transformer LSTM Grid Sphere / SO(3) Manifold / Mesh

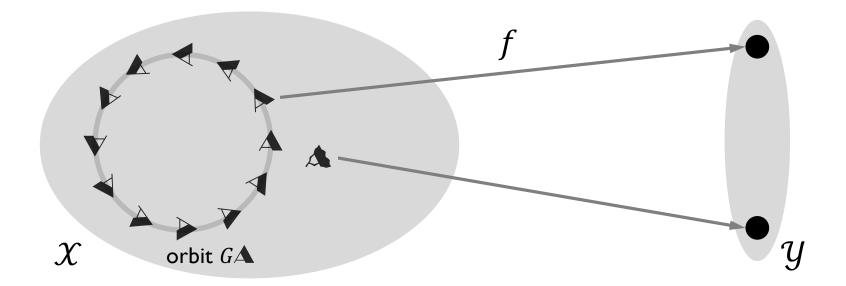
Graph Set Complete Graph 1D Grid

Symmetry Group 6

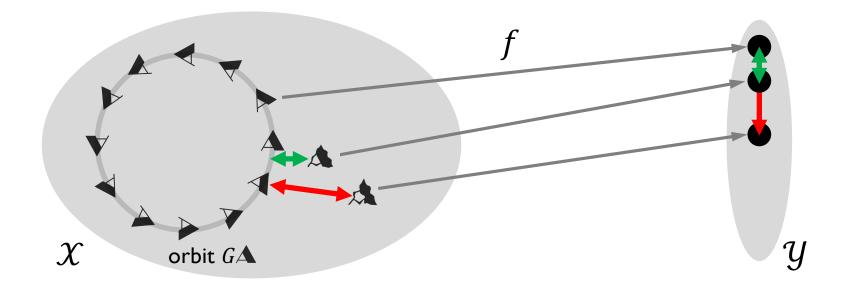
Translation Rotation SO(3) Isometry Iso(Ω) / Gauge Symmetry SO(2) Permutation S_n Permutation S_n Permutation S_n Time warping

APPROXIMATE INVARIANCE & GEOMETRIC STABILITY

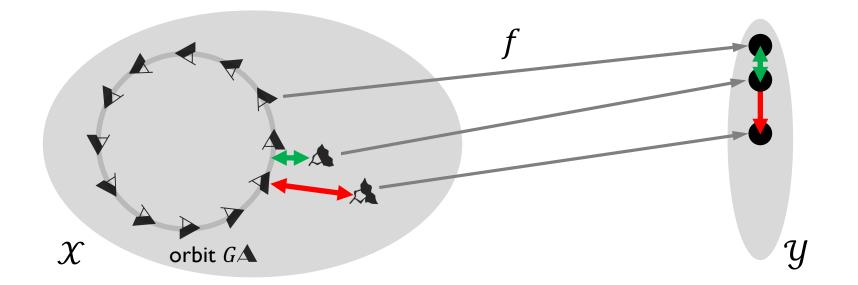




"Approximate invariance to transformations approximately in the group *G*"



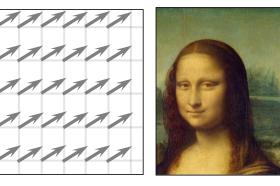
"Approximate invariance to transformations approximately in the group *G*"



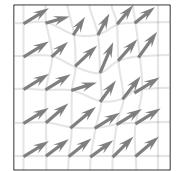
A function *f* is said to be **geometrically stable** if for a general deformation *τ*: Ω → Ω and some distance *d* on the space of transformations

 $||f(x \circ \tau^{-1}) - f(x)|| \le d(\tau, G) ||x||$

Example: 2D warping



Translation



Warping

 $\|\nabla \tau\|^2 = \int_{\mathbb{R}^2} \|\nabla \tau(u)\|^2 \mathrm{d}u = 0$

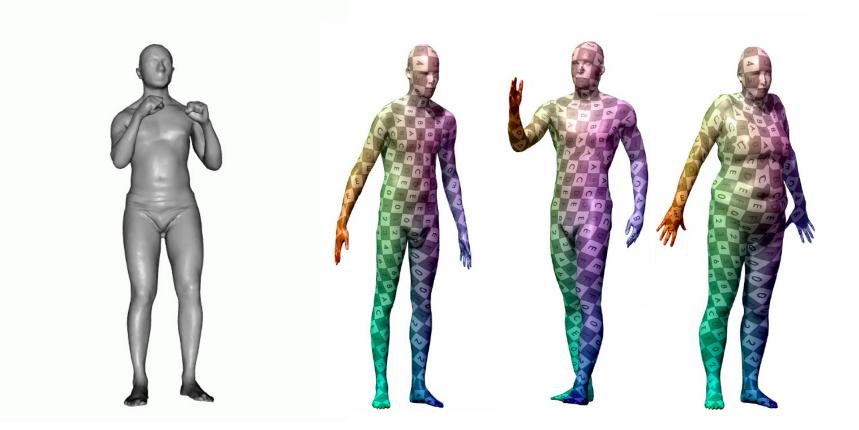
 $\|\nabla \tau\|^2 > 0$

A **geometrically stable** function obeys a bound of the form

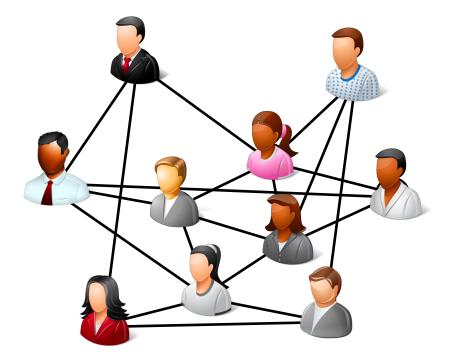
$$||f(x \circ \tau^{-1}) - f(x)|| \le ||\nabla \tau|| ||x||$$

Bruna, Mallat 2012

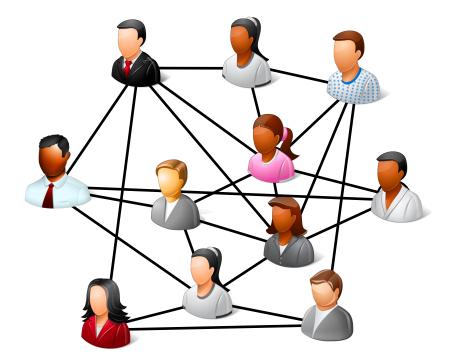
Stability under domain deformation



Stability under domain deformation



Stability under domain deformation



Takeaways

- Invariance reduces the sampling complexity but on its own might not be sufficient to tame the curse of dimensionality
- Symmetry prior must be combined with Scale Separation
- *Linear invariants* are not sufficiently expressive
- Instead, one may use nonlinear equivariants obtained by combining *linear equivariants* with *element-wise nonlinearities*
- Combination of these principles leads to a *novel hypothesis class* that is expressive and able to tame the curse of dimensionality.
- Its implementation in the form of neural networks is what we call the *Geometric Deep Learning blueprint*
- Next lectures: examples of instances of the Geometric Deep Learning blueprint on different domains / symmetry groups

Key Concepts

- Scale separation and multiresolution analysis
- Linear equivariants and invariants
- Geometric Deep Learning blueprint

Main References

- M. Bronstein et al., <u>Geometric deep learning</u>, *arXiv*:2104.13478, 2021. Section 3 "Geometric priors"
- N. Carter, Visual group theory, 2009. Textbook introducing main concepts of group theory
- C. Esteves, <u>Theoretical aspects of group equivariant neural networks</u>, *arXiv*:2004.05154, 2020. Group representations, harmonic analysis, equivariant networks