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Outline

• We now move to Sets to Graphs

• Sets can be considered as “node-only” Graphs without edges

• Graphs are a very versatile abstraction used ubiquitously in sciences

• For many years, Geometric Deep Learning was nearly synonymous with Graph 
Representation Learning





Social networksMolecules Interactomes

Graphs = Systems of Relations and Interactions



Why Graphs?

• Simple mathematical abstraction for systems of relations or interactions

• Very well developed theory

• Many successful applications from chemistry to social media to even pure math

• In many ways, graphs are the main modality of data we receive from Nature

• Graph representation learning is likely critical on the path to Artificial General 
Intelligence (AGI).



“The image of the world around us, which we carry 
in our head, is just a model. Nobody in his head 
imagines all the world, government or country. He 
has only selected concepts, and relationships between 
them, and uses those to represent the real system.”

—Jay Forrester on mental models (1971)
Jay Wright Forrester

Why Graphs?

Forrester 1971



Euler 1741

L. Euler

1741

Origins of Graph Theory

The soluton of the classical problem of the “Bridges of 
Königsberg” by Euler in 1736 first showed the power of graphs to 

abstract out the geometry (“geometria situs”)



Euler 1741; Poincaré 1895

L. Euler

1741

Origins of Topology

Poincaré’s “analysis situs.”
His famous Conjecture 
appeared in a supplement 
published in 1904. 

H. Poincaré

1895



Sylvester 1878

J. Sylvester

1878

Origin of the name “Graph”

The term “graph” appeared first in the 
chemical context



GRAPHS: THE BASICS



Types of Learning Tasks on Graphs

Graph regression
water solubility?

Node classification
who is a spammer

Link prediction
WTF (whom to follow)?

?



Invariant vs Equivariant tasks

water solubility? who is a spammer? 



GNNs = Parametric graph functions

𝑓! 𝑦

Note: we use the term “GNN” to refer to general parametric graph functions. The particular class of GNNs we 
consider are Message Passing Neural Networks (MPNNs). Petar Veličković argues that “it’s all message passing”

Graph+Features



Types of Learning Tasks on Graphs

GNN

Input graph Embedding

Node-wise

Graph-wise

Edge-wise

𝐳!

𝐳"

𝐳!#



Transductive vs Inductive tasks

Training Transductive
same graph, 

different nodes

Inductive
different graph

?

?

?

?

?
?

?

?

?

?



Graphs: The Basics

• A graph is a pair 𝐺 = 𝑉, 𝐸  

• 𝑉	= vertices (or nodes) 

• 𝐸 ⊆ 𝑉×𝑉 = edges (or links). If 𝑢, 𝑣 ∈ 𝐸, we will 
write 𝑢~𝑣

• Edges in general are directed, i.e., we might 
have 𝑢~𝑣 but not 𝑣~𝑢. 

𝑢 𝑣
𝑢, 𝑣



Graphs: The Basics

• A graph is a pair 𝐺 = 𝑉, 𝐸  

• 𝑉	= vertices (or nodes) 

• 𝐸 ⊆ 𝑉×𝑉 = edges (or links). If 𝑢, 𝑣 ∈ 𝐸, we will 
write 𝑢~𝑣

• Edges in general are directed, i.e., we might 
have 𝑢~𝑣 but not 𝑣~𝑢. 

• Nodes and edges can have attributes. We will 
typically assume
• 𝑑-dimensional vector node features, denoted 𝐱$
• scalar edge weights, denoted 𝑤$%

𝑢 𝑣
𝑤!"

𝐱!



Extensions of Graphs

Multigraph Hypergraph Cellular complex



𝐗

Feature 
matrix 𝑛×𝑑
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𝐱-

• Nodes indexed as 𝑉 = 1, … , 𝑛  in arbitrary order 
• Node features stacked row-wise in an 𝑛×𝑑 matrix 𝐗 

Representations of Graphs as matrices



𝐗

Feature 
matrix 𝑛×𝑑
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𝐀

Adjacency 
matrix 𝑛×𝑛

1

• Nodes indexed as 𝑉 = 1, … , 𝑛  in arbitrary order 
• Node features stacked row-wise in an 𝑛×𝑑 matrix 𝐗 
• Graph structure represented by 𝑛×𝑛 adjacency matrix 𝐀 with 𝑎!# = 1 iff 𝑖~𝑗 

Representations of Graphs as matrices

1
2
3
4
5
6
7
8
9
10
11

1
2
3
4
5
6
7
8
9
10
11



2 1
3

4
5

6

7

8

9
10 11

𝐀 𝐗

Adjacency 
matrix 𝑛×𝑛

Feature 
matrix 𝑛×𝑑

Representations of Graphs as matrices

The ordering of nodes is arbitrary!
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What do we want now with Graphs?

𝑓 	 = 𝑓 	

• The function now also depends on edges (adjacency 𝐀) in addition to node features 𝐗 

• Permutation invariance:  𝑓 𝐏𝐗, 𝐏𝐀𝐏& = 𝑓 𝐗, 𝐀

• Permutation equivariance:  𝐅 𝐏𝐗, 𝐏𝐀𝐏& = 𝐏𝐅 𝐗, 𝐀
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Invariant Graph Functions

𝑓 𝐗, 𝐀𝑓 𝐏𝐗, 𝐏𝐀𝐏⊤ =
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Equivariant Graph Functions

𝐅 𝐗, 𝐀𝐅 𝐏𝐗, 𝐏𝐀𝐏⊤ = 𝐏



DeepSets

On sets, we can only process each node independently 
(or all together)



Graph Neural Networks

On graphs, we have a notion of a neighbourhood of ever node 
𝒩! = 𝑗 ∈ 𝑉 ∶ 	𝑖~𝑗



𝑖

neighbourhood

	𝐱!∈𝒩! 	𝐗𝒩! = 𝐱!∈𝒩! 	

multiset of 
neighbour features

Neighbour Aggregation

𝒩/ = 𝑗: 𝑖~𝑗



𝐗𝒩!

𝐱,

ϕ

permutation invariant

local function

Neighbour Aggregation

𝑖



−	ϕ 𝐱-, 𝐗𝒩" −

𝐅 𝐗, 𝐀 =
−	ϕ 𝐱., 𝐗𝒩# −

−	ϕ 𝐱, , 𝐗𝒩! −
⋮

⋮

permutation equivariant

GNN Layer



GNNs as an Instance of Geometric Deep Learning Blueprint

𝐅

Graph 𝐺 = 𝑉, 𝐸 Node features 𝒳 𝐺 Functions ℱ 𝒳 𝐺

Permutation group 
𝜋 ∈ 𝑆.

Permutation matrix

𝐏𝐗,	𝐏𝐀𝐏⊤
Message passing

𝐅 𝐏𝐗, 𝐏𝐀𝐏⊤ = 𝐏𝐅 𝐗, 𝐀



GNN FLAVOURS



Convolutional GNNs

𝐱/

𝐱0

𝐱1

𝐱2
𝐱3

Defferard et al. 2016; Kipf, Welling 2016 (GCN)

𝑎/0
𝑎//

𝑎/2
𝑎/3

𝑎/1

𝜙 𝐱, , -
0∈𝒩!

𝑎,0𝜓 𝐱0 	



Convolutional GNNs

𝐱/

𝐱0

𝐱1

𝐱2
𝐱3

Defferard et al. 2016; Kipf, Welling 2016 (GCN)

graph 
adjacency

𝑎/0
𝑎//

𝑎/2
𝑎/3

𝑎/1

𝜙 𝐱, , -
0∈𝒩!

𝑎,0𝜓 𝐱0 	



Convolutional GNNs

𝐱/

𝐱0

𝐱1

𝐱2
𝐱3

Defferard et al. 2016; Kipf, Welling 2016 (GCN)

graph 
adjacency

𝑎/0
𝑎//

𝑎/2
𝑎/3

𝑎/1

𝜙 𝐱, , -
0∈𝒩!

𝑎,0𝜓 𝐱0 	

node-wise 
transformation



Convolutional GNNs

𝐱/

𝐱0

𝐱1

𝐱2
𝐱3

Defferard et al. 2016; Kipf, Welling 2016 (GCN)

node 
feature

graph 
adjacency

𝑎/0
𝑎//

𝑎/2
𝑎/3

𝑎/1

𝜙 𝐱, , -
0∈𝒩!

𝑎,0𝜓 𝐱0 	

node-wise 
transformation



Convolutional GNNs

𝐱/

𝐱0

𝐱1

𝐱2
𝐱3

𝑎/0
𝑎//

𝑎/2
𝑎/3

𝑎/1

Defferard et al. 2016; Kipf, Welling 2016 (GCN)

𝜙 𝐱, , -
0∈𝒩!

𝑎,0𝐖𝐱0	

node 
feature

graph 
adjacency

node-wise linear 
transformation



Convolutional GNNs

𝐱/

𝐱0

𝐱1

𝐱2
𝐱3

Defferard et al. 2016; Kipf, Welling 2016 (GCN)
Rossi, Frasca et B 2020 (SIGN); Ying et al. 2018 (PinSAGE)

𝐗	 ← 	𝜎 𝐀𝐗𝐖

diffusion
𝑛×𝑛

Channel mixing 
𝑑×𝑑

𝑎/0
𝑎//

𝑎/2
𝑎/3

𝑎/1

• Simplest GNN

• Highly scalable

• Industrial use cases

• Folklore: works only on 
homophilic graphs

nonlinear 
activation



Attentional GNNs

𝐱/

𝐱0

𝐱1

𝐱2
𝐱3

𝛼/0
𝛼//

𝛼/2
𝛼/3

𝛼/1

𝜙 𝐱, , -
0∈𝒩!

𝛼,0 𝐱, , 𝐱0 𝜓 𝐱0 	

Monti et B 2017; Veličković et al. 2018 (GAT)

learnable attention 
weights



Message-Passing GNNs

𝐱/

𝐱0

𝐱1

𝐱2
𝐱3

𝐦/0

𝐦//

𝐦/2
𝐦/3

𝐦/1

𝜙 𝐱, , -
0∈𝒩!

𝜓 𝐱, , 𝐱0 	

Gilmer et al. 2017 (MPNN); Battaglia et al. 2018 (Graph Networks)
Wang et B, Solomon 2018 (edgeconv)

message from 
node 𝑗 to node 𝑖



Flavours of GNNs

𝐱/

𝐱0

𝐱1

𝐱2
𝐱3

𝐦/0

𝐦//

𝐦/2
𝐦/3

𝐦/1𝐱/

𝐱0

𝐱1

𝐱2
𝐱3

𝛼/0

𝛼//

𝛼/2
𝛼/3

𝛼/1𝐱/

𝐱0

𝐱1

𝐱2
𝐱3

𝑎/0

𝑎//

𝑎/2
𝑎/3

𝑎/1

Generic Message PassingAttentionalConvolutional

𝜙 𝐱!, /
#∈𝒩4

𝑎!#𝜓 𝐱# 	 𝜙 𝐱!, /
#∈𝒩4

𝛼!# 𝐱!, 𝐱# 𝜓 𝐱# 𝜙 𝐱!, /
#∈𝒩4

𝜓 𝐱!, 𝐱# 	⊆ ⊆



Flavours of GNNs

𝐱/

𝐱0

𝐱1

𝐱2
𝐱3

𝐦/0

𝐦//

𝐦/2
𝐦/3

𝐦/1𝐱/

𝐱0

𝐱1

𝐱2
𝐱3

𝛼/0

𝛼//

𝛼/2
𝛼/3

𝛼/1𝐱/

𝐱0

𝐱1

𝐱2
𝐱3

𝑎/0

𝑎//

𝑎/2
𝑎/3

𝑎/1

Generic Message PassingAttentionalConvolutional

⊆ ⊆𝐀𝐗 𝐀 𝐗 𝐗 𝓐 𝐗



MAIN INGREDIENTS OF AN MPNN



Main Ingredients of an MPNN

𝑖

𝑗

𝐱, ← 𝜙 𝐱, , , , -
0∈𝒩!

	 𝜓 𝐱, , 𝐱0 	



Message passing 
function

𝐱, ← 𝜙 𝐱, , , , -
0∈𝒩!

	 𝜓 𝐱, , 𝐱0 	

Main Ingredients of an MPNN

𝑖

𝑗



Message passing 
function

Aggregation 
operator

𝐱, ← 𝜙 𝐱, , , , -
0∈𝒩!

	 𝜓 𝐱, , 𝐱0 	

Main Ingredients of an MPNN

𝑖

𝑗



Message passing 
function

Aggregation 
operator

Computational 
graph

𝐱, ← 𝜙 𝐱, , , , -
0∈𝒩!

	 𝜓 𝐱, , 𝐱0 	

𝑖

𝑗

Main Ingredients of an MPNN



Message passing 
function

Aggregation 
operator

Computational 
graph

𝐱, ← 𝜙 𝐱, , , , -
0∈𝒩!

	 𝜓 𝐱, , 𝐱0 	

𝑗

Main Ingredients of an MPNN

𝑖



EXPRESSIVE POWER OF GNNS



Graph isomorphism

• Two graphs 𝐺 = 𝑉, 𝐸  and 𝐺′ = 𝑉′, 𝐸′  are isomorphic if there exists an edge-preserving 
bijection φ: 𝑉 → 𝑉′ s.t. 𝑢~𝑣 in 𝐺 iff φ 𝑢 ~φ 𝑣  in 𝐺 )

𝐺 = 𝑉, 𝐸 𝐺′ = 𝑉′, 𝐸′



Graph isomorphism

• Two graphs 𝐺 = 𝑉, 𝐸  and 𝐺′ = 𝑉′, 𝐸′  are isomorphic if there exists an edge-preserving 
bijection φ: 𝑉 → 𝑉′ s.t. 𝑢~𝑣 in 𝐺 iff φ 𝑢 ~φ 𝑣  in 𝐺 )

𝐺 = 𝑉, 𝐸 𝐺′ = 𝑉′, 𝐸′

Note: φ is not unique where the graph has symmetries (edge-preserving automorphism)



Graph isomorphism

• Two graphs 𝐺 = 𝑉, 𝐸  and 𝐺′ = 𝑉′, 𝐸′  are isomorphic if there exists an edge-preserving 
bijection φ: 𝑉 → 𝑉′ s.t. 𝑢~𝑣 in 𝐺 iff φ 𝑢 ~φ 𝑣  in 𝐺 )

• A set of graphs isomorphic to each other is an isomorphism class

• Complexity of computing graph isomorphism is an open question (“NP intermediate”: 
not NP but also no polynomial time algorithm currently known)

𝐺 = 𝑉, 𝐸 𝐺′ = 𝑉′, 𝐸′

≃



Attributed graph isomorphism

• Two node-attributed graphs 𝐺 = 𝑉, 𝐸, 𝐗  and 𝐺′ = 𝑉), 𝐸), 𝐗′  are isomorphic if there 
exists a bijection φ: 𝑉 → 𝑉′ s.t. 

• Structure preservation: 𝑢~𝑣 in 𝐺 iff φ 𝑢 ~φ 𝑣  in 𝐺 ) 

• Feature preservation:  𝐱$ = 𝐱* $
)

𝐺 = 𝑉, 𝐸, 𝐗 𝐺′ = 𝑉8, 𝐸8, 𝐗′

≃



Universal Approximation on Graphs

Theorem: A class of functions is universally approximating permutation-
invariant functions on graphs with finite node features iff it can discriminate 
graph isomorphisms.

Chen 2019

Universal approximation on graphs is 
equivalent to graph isomorphism testing



What graphs can MPNNs represent?

MPNN

𝒴

𝒢

Isomorphic 
graphs

Isomorphic graphs have identical representations

Adapted from Bevilacqua et al. 
(LoG Tutorial 2022)



What graphs can MPNNs represent?

𝒴

𝒢

Isomorphic 
graphs

Isomorphic graphs have identical representation 
The converse is not true! (there might be 
indistinguishable non-isomorphic graphs)Adapted from Bevilacqua et al. 

(LoG Tutorial 2022)

MPNN



Expressive power of MPNNs

All permutation-
invariant functions

Functions that can be 
computed by MPNN

Adapted from Bevilacqua et al. 
(LoG Tutorial 2022)

All graph-isomorphism 
discriminating functions



WEISFEILER-LEHMAN TEST



Weisfeiler, Lehman 1968

B. WeisfeilerA. Le(h)man

Weisfeiler-Lehman Test



Weisfeiler, Lehman 1968

Weisfeiler-Lehman Test

{{ }},,, )ϕ(



Weisfeiler, Lehman 1968

Weisfeiler-Lehman Test

{{ }},,, )ϕ(

{{ }},, )ϕ(



Weisfeiler, Lehman 1968

Weisfeiler-Lehman Test

{{ }},,, )ϕ(

{{ }},, )ϕ(



Weisfeiler, Lehman 1968

Weisfeiler-Lehman Test

{{ }},,, )ϕ(

{{ }},, )ϕ(



Weisfeiler, Lehman 1968

Weisfeiler-Lehman Test
{{ }},,, )ϕ(

{{ }},, )ϕ(

{{ }},, )ϕ(



Weisfeiler, Lehman 1968

Weisfeiler-Lehman Test



Weisfeiler, Lehman 1968

Weisfeiler-Lehman Test



non-isomorphic graphs that are WL-equivalent

Necessary but insufficient condition for 
graph isomorphism!



What does WL test see?

=



Example of non-isomorphic graphs that cannot be distinguished 
by Weisfeiler-Lehman test (outputs “possibly isomorphic”)

r-regular graphs (deg=r at every node) with the same number of nodes

What WL cannot test?



Any induced connected pattern with ≥ 3 nodes (triangles, cycles, etc.)

Example of non-isomorphic graphs that cannot be distinguished 
by Weisfeiler-Lehman test (outputs “possibly isomorphic”)

What WL cannot test?



Example of non-isomorphic graphs that cannot be distinguished 
by Weisfeiler-Lehman test (outputs “possibly isomorphic”)

decalin bicyclopnetyl

What WL cannot test?

Important implications e.g. in chemistry!



Expressive power of Weisfeiler-Lehman

All permutation-
invariant functions

Functions depending 
on counts of certain 

substructures

𝑓: 𝐺 ↦ #rings 𝐺

Adapted from Bevilacqua et al. 
(LoG Tutorial 2022)

Functions that can be 
computed by WL



MPNNs vs WL

𝑖

𝑗

• MPNN:

where 𝜙 is injective (hash function) 
• WL-test:

MPNN expressive power is upper-bounded 
by the Weisfeiler-Lehman test

𝐱, ← 𝜙 𝐱, , , , -
0∈𝒩!

	 𝜓 𝐱, , 𝐱0 	

𝐱0 ∶ 𝑗 ∈ 𝒩,𝐱, ← 𝜙 𝐱, , 	𝐱0 ∶ 𝑗 ∈ 𝒩,	



MPNNs vs WL

𝐱, ← 𝜙 𝐱, , , , -
0∈𝒩!

	 𝜓 𝐱, , 𝐱0 	

𝑖

𝑗

• MPNN:

𝐱0 ∶ 𝑗 ∈ 𝒩,𝐱, ← 𝜙 𝐱, , 	𝐱0 ∶ 𝑗 ∈ 𝒩,	
where 𝜙 is injective (hash function) 

• WL-test:

When is MPNN as expressive as the 
Weisfeiler-Lehman test?



Expressive power of MPNNs

All permutation-
invariant functions

Functions that can be 
computed by WL

Adapted from Bevilacqua et al. 
(LoG Tutorial 2022)

Functions that can be 
computed by some 

MPNNs

Functions depending 
on counts of certain 

substructures



					

Are all Aggregators the same?

Input

		
max mean 

	
sum

“skeleton” 
of the multiset

Distribution 
of the multiset



Are all Aggregators the same?

mean and max
fail to distinguish

max
fails to distinguish

mean and max
fail to distinguish



Graph Isomorphism Network (GIN)

Theorem: Assume graph node features are from a countable set. Then, an 
MPNN with with injective aggregator □ , update function ϕ, and graph-wise 
readout function, is as powerful as the Weisfeiler-Lehman test.  

• Assumption of discrete countable features (often not the case in practice)

• Proof similar to DeepSets, with the difference that we now deal with multisets, where 
popular injective set functions such as mean are not injective anymore

• GIN: uses an injective multiset function of the form 

Xu 2019; (Morris 2019)

MLP 1 + 𝜖 𝐱! + J
#∈𝒩4

𝐱#



Expressive power of GIN (“best MPNN”)

Functions that can be 
computed by GIN

= More expressive
GNNs

Adapted from Bevilacqua et al. 
(LoG Tutorial 2022)

Functions that can be 
computed by WL

All permutation-
invariant functions



What to do with continuous features?

Corso et al. 2020

• Many practical applications rely on assumption of continuous (uncountable) features

• Most of the results we have seen (DeepSets, GINs, etc.) do not work in this setting!

Theorem: In order to discriminate between real multisets of size 𝑛, at least 𝑛 
aggregators are needed.  

Proof: relying on Borsuk-Ulam Theorem (continuous function from 𝕊6 to ℝ6 maps some pairs of antipodal 
points to the same point)



Principal Neighbourhood Aggregation (PNA)

Corso et al. 2020

• Use a combination of multiple aggregators defined as moments of neighbour features

=
𝐼

𝑆 𝐷, 𝛼 = 1
𝑆 𝐷, 𝛼 = −1

⨂
𝜇
𝜎
max
min

    (scalers 𝑆 𝑑, 𝛼 = +,- ./0
1

2
 emphasize hub nodes and allow for aggregators like sum)

• Empirically good performance



Principal Neighbourhood Aggregation (PNA)

Corso et al. 2020

Mean log error of different aggregators on different tasks



Towards More Expressive GNNs

Topological 
message passing

Subgraph 
GNNs

Papp et al. 2021
Cotta et al. 2021
Zhao et al. 2021
Bevilacqua, Frasca et B, Maron 2021
Frasca et B, Maron 2022

Bodnar, Frasca et B 2021

Higher-order 
WL tests

Maron et al. 2019
Morris et al. 2019

Positional & 
Structural encoding

Monti, Otness et B 2018
Sato 2020
Dwivedi et al. 2020
Bouritsas, Frasca et B 2020
…many more



HIGHER-ORDER GNNs



WL test

{{ ,, )ϕ(

Node colour 
refinement

}}



k-WL test

Subgraph colour 
refinement

• Colour adjacent k-tuples 𝐯 ∈ 𝑉3  instead of nodes

𝐯



k-WL test

Subgraph colour 
refinement

• Colour adjacent k-tuples 𝐯 ∈ 𝑉3  instead of nodes

• k-tuples are adjacent if they differ in one node; the 
jth neighbourhood of 𝐯 is defined as

𝒩𝐯,# = 𝑣0 , … , 𝑣#60 , 𝑤, 𝑣#/0 , … , 𝑣3 ∶ 𝑤 ∈ 𝑉1

2 3

𝐯
𝒩𝐯,0



	𝑐𝐰 ∶ 𝐰 ∈ 𝒩𝐯,# 	

k-WL test

Subgraph colour 
refinement

• Colour adjacent k-tuples 𝐯 ∈ 𝑉3  instead of nodes

• k-tuples are adjacent if they differ in one node; the 
jth neighbourhood of 𝐯 is defined as

𝒩𝐯,# = 𝑣0 , … , 𝑣#60 , 𝑤, 𝑣#/0 , … , 𝑣3 ∶ 𝑤 ∈ 𝑉

• For every tuple 𝐯 ∈ 𝑉3 , update the colour
ϕ 𝑐𝐯 , 𝑐𝒩𝐯,9 , … , 𝑐𝒩𝐯,:

    where 𝑐𝒩𝐯,; = 𝑐𝐰 ∶ 𝐰 ∈ 𝒩𝐯,#

1

2 3

𝐯
𝒩𝐯,8



k-WL test

Subgraph colour 
refinement

ϕ
}}( ),

{{ , }},{{ ,
}}{{ ,

Note: there are two slightly different versions of the high-dimensional WL test referred to as “k-WL” and 
“folklore k-WL” that differ in the update step. 



What graphs can k-WL distinguish?

1-WL = 2-WL

3-WL (2-FWL)

All graphs

Strongly 
regular

4-WL (3-FWL) 

4-CFI 
graphs

Babai, Mathon 1979 (k-WL)
Cai, Fürer, Immerman 1992 (CFI graphs)

Regular



Strongly regular graphs cannot be distinguished by 3-WL

What graphs cannot 3-WL distinguish?

Bouritsas, Frasca et B 2020



What graphs cannot k-WL distinguish?

Cai, Fürer, Immerman 1992 (CFI graphs)

Cai-Fürer-Immerman (CFI) graphs



Various k-WL-like GNNs

Morris et al. 2019; Morris et al. 2020; Morris et al. 2022

• k-GNNs mimics the k-WL test by working with subgraphs of size k:

𝐱𝐯 ← ϕ 𝐖0𝐱𝐯 + J
𝐮∈𝒩𝐯

𝐖8𝐱𝐮

    where 𝒩𝐯 = 𝐮 ∈ 𝑉3 ∶ 𝐮 ∩ 𝐯 = 𝑘 − 1

• Complexity: 𝒪 𝑛3  

• More efficient variants
• Sparse neighbourhoods
• Sparse sets of k-tuples



Towards More Expressive GNNs

Topological 
message passing

Subgraph 
GNNs

Papp et al. 2021
Cotta et al. 2021
Zhao et al. 2021
Bevilacqua, Frasca et B, Maron 2021
Frasca et B, Maron 2022

Bodnar, Frasca et B 2021

Higher-order 
WL tests

Maron et al. 2019
Morris et al. 2019

Positional & 
Structural encoding

Monti, Otness et B 2018
Sato 2020
Dwivedi et al. 2020
Bouritsas, Frasca et B 2020
…many more



POSITIONAL ENCODING



What does WL test see?

=



X

Node encoding

≠

“Colouring” nodes removes (some) ambiguity



How to “colour” nodes?

• Random

• Substructure count

• Laplacian/Adjacency eigenvectors

• Gradients of global encoding (“direction”)

• Shortest path distance

• Diffusion kernel

• Random walk kernel

• …many more



Random node features

Probabilistic Universal Approximation: Let 𝑓 be a permutation-invariant 
graph function. Then, for all ε, 𝛿 > 0, there exists an rMPNN f𝑓 that ε, 𝛿 -
approximates 𝑓, in the sense that

P 𝑓 𝐺 − f𝑓 𝐺 ≤ ε ≥ 1 − 𝛿

Abboud et al. 2021; Sato 2021

• rMPNN: Attach a random feature to every node of the graph, then apply MPNN

• Output of rMPNN is a random variable

• Not permutation invariant! (only in expectation)

• Embedding dimension 𝒪 𝑛8𝛿

• Extensions to equivariant functions, weighted graphs, etc. 



Graph Substructure Network (GSN)

Bouritsas, Frasca et B 2020

• Choose a bank of substructures containing graphs 𝐻	of size 𝑘 = 𝒪 1 	

• Count the occurrence of each 𝐻 in every node/edge of the input graph
• Subgraph counts

• Induced subgraph counts

𝐻 = 𝑉;, 𝐸; 𝐺 = 𝑉, 𝐸

𝐻=subgraph 
of 𝐺

𝑉: ⊆ 𝑉, 𝐸: ⊆ 𝐸 

𝐻=induced 
subgraph of 𝐺
𝐸: = 𝐸 ∩ 𝑉:×𝑉:



Graph Substructure Network (GSN)

Bouritsas, Frasca et B 2020

• Choose a bank of substructures containing graphs 𝐻	of size 𝑘 = 𝒪 1 	

• Count the occurrence of each 𝐻 in every node/edge of the input graph

• Use the counts as additional node/edge features 

substructure bank

1

1

1

1

2

2

1

1

1

1

1

1

1

1

1

1

1

1

11



Graph Substructure Network (GSN)

Bouritsas, Frasca et B 2020

• Choose a bank of substructures containing graphs 𝐻	of size 𝑘 = 𝒪 1 	

• Count the occurrence of each 𝐻 in every node/edge of the input graph

• Use the counts as additional node/edge features 

substructure bank



Graph Substructure Network (GSN)

Bouritsas, Frasca et B 2020

• Choose a bank of substructures containing graphs 𝐻	of size 𝑘 = 𝒪 1 	

• Count the occurrence of each 𝐻 in every node/edge of the input graph

• Use the counts as additional node/edge features 

• Complexity: precomputation (substructure counting, which is worse case is 𝒪 𝑛3   but 
in practice much more optimistic) + standard MPNN (linear complexity 𝒪 𝐸 ~𝒪 𝑛 )

Theorem: GSN is strictly more expressive than WL if 
• 𝐻 is not a star graph, and counting is done using subgraph matching; or
• 𝐻 is of size 𝑘 ≥ 3, and counting is using induced subgraph matching.



Graph Substructure Network (GSN)

Bouritsas, Frasca et B 2020

• Choose a bank of substructures containing graphs 𝐻	of size 𝑘 = 𝒪 1 	

• Count the occurrence of each 𝐻 in every node/edge of the input graph

• Use the counts as additional node/edge features 

• Complexity: precomputation (substructure counting, which is worse case is 𝒪 𝑛3   but 
in practice much more optimistic) + standard MPNN (linear complexity 𝒪 𝐸 ~𝒪 𝑛 )

Theorem: GSN is not less expressive than 3-WL.

Proof: by example



Strongly Regular (SR) graphs cannot be distinguished by 3-WL
but can be distinguished by GSN with 4-clique count

What graphs can GSN distinguish?

Bouritsas, Frasca et B 2020



What graphs can GSN distinguish?

1-WL = 2-WL

3-WL (2-FWL)

All graphs

Strongly 
regular

GSN with 4-
clique count

Bouritsas, Frasca et B 2020



4-WL (3-FWL) 

What graphs can GSN distinguish hypothetically?

1-WL = 2-WL

3-WL (2-FWL)

All graphs

Strongly 
regular

Bouritsas, Frasca et B 2020



4-WL (3-FWL) 

What graphs can GSN distinguish hypothetically?

1-WL = 2-WL

3-WL (2-FWL)

All graphs

Strongly 
regular

GSN with 𝑘 = 𝑛 − 1 
subgraphs if the 

Graph Reconstruction 
Conjecture holds

Bouritsas, Frasca et B 2020



Molecule property prediction on ZINC 
using GSN with different substructures 

Graph Substructure Network in practice

Bouritsas, Frasca et B 2020
Slide adapted from Bevilacqua et al. (LoG 2022 tutorial)

cycles

paths trees

MPNN

GSN



Molecule of caffeine

Molecule property prediction on ZINC 
using GSN with different substructures 

Graph Substructure Network in practice

Bouritsas, Frasca et B 2020
Slide adapted from Bevilacqua et al. (LoG 2022 tutorial)

Substructure = 
application-specific 

inductive bias



Towards More Expressive GNNs

Topological 
message passing

Subgraph 
GNNs

Papp et al. 2021
Cotta et al. 2021
Zhao et al. 2021
Bevilacqua, Frasca et B, Maron 2021
Frasca et B, Maron 2022

Bodnar, Frasca et B 2021

Higher-order 
WL tests

Maron et al. 2019
Morris et al. 2019

Positional & 
Structural encoding

Monti, Otness et B 2018
Sato 2020
Dwivedi et al. 2020
Bouritsas, Frasca et B 2020
…many more



SUBGRAPH GNNs



Subgraph GNNs

colour histogramWL colouring

X

X

X

X



Subgraph GNNs

Papp et al. 2021; Cotta et al. 2021; Zhao et al. 2021 Bevilacqua, Frasca et B, Maron 2022; Frasca et B, Maron 2022

colour histogramWL colouring

Graph perturbation allows to distinguish between structures 
otherwise indistinguishable by Weisfeiler-Lehman 



}
Collection of Subgraphs

Bevilacqua, Frasca et B, Maron 2022; Frasca et B, Maron 2022

A multiset of subgraphs obtained by edge deletion

1. 2. 3.

5. 6. 7.

{{ }4.



}
Collection of Subgraphs

Bevilacqua, Frasca et B, Maron 2022; Frasca et B, Maron 2022

A multiset of subgraphs obtained by node deletion

{{ }1. 2. 3.

4. 5. 6.



Graph Reconstruction Conjectures

S. UlamP. Kelly

Kelly 1942 (PhD thesis where the Conjecture appeared); Kelly 1957 (reconstruction from k-subgraphs); McKay 1997 (proof for small graphs); 
Nýdl 2001 (k-reconstructability for certain graph families) 

Graph Reconstruction Conjecture: A graph 
𝐻	is said to be a reconstruction of 
𝐺 (denoted  𝐻~𝐺) if they have the same 
multiset (deck) of node-removed subgraphs 
(cards). If 𝐺	and 𝐻 are two finite, undirected, 
simple graphs with at least three vertices and 
𝐻 is the reconstruction of 𝐺, then 𝐻 ≃ 𝐺.

Collection of subgraphs determines the 
graph isomorphism class



Graph Reconstruction Conjectures

S. UlamP. Kelly

Kelly 1942 (PhD thesis where the Conjecture appeared); McKay 1997 (proof for small graphs); 
Kelly 1957 (reconstruction from k-subgraphs); Nýdl 2001 (k-reconstructability for certain graph families) 

Graph Reconstruction Conjecture: A graph 
𝐻	is said to be a reconstruction of 
𝐺 (denoted  𝐻~𝐺) if they have the same 
multiset (deck) of node-removed subgraphs 
(cards). If 𝐺	and 𝐻 are two finite, undirected, 
simple graphs with at least three vertices and 
𝐻 is the reconstruction of 𝐺, then 𝐻 ≃ 𝐺.

• Proven for small graphs with 𝑛 ≤ 11 nodes 
• Open question in general
• Generalisations for subgraphs of size 𝑛 − 𝑘



Equivariant Subgraph Aggregation Networks 

Bevilacqua, Frasca et B, Maron 2022; Frasca et B, Maron 2022

input graph

multiset of subgraphs Tensor representation

{{ }}
𝑆6 𝑆6

𝑆3𝑆3

Symmetry group of subgraph colection 𝐺 = 𝑆.×𝑆=



B et al. 2022



Towards More Expressive GNNs

Topological 
message passing

Subgraph 
GNNs

Papp et al. 2021
Cotta et al. 2021
Zhao et al. 2021
Bevilacqua, Frasca et B, Maron 2021
Frasca et B, Maron 2022

Bodnar, Frasca et B 2021

Higher-order 
WL tests

Maron et al. 2019
Morris et al. 2019

Positional & 
Structural encoding

Monti, Otness et B 2018
Sato 2020
Dwivedi et al. 2020
Bouritsas, Frasca et B 2020
…many more



TOPOLOGICAL MESSAGE PASSING



Cell complexes

Set Graph Cell (CW) 
complex



Topological Message Passing

0-dim

Bodnar, Frasca et B. 2021

1-dim

2-dim
• Lift the graph into a cell complex

• Hierarchical message passing

• Strictly more expressive than 
Weisfeiler-Lehman



GCN

PPGN

t

ex
pr
.

higher-order (beyond pairwise)

message-passing

MPNN / GIN
(1-W

L)

𝛅-2-LWL+

1-CLIP / 
rMPNN

∞-CLIP/ 
RP-GNN

stochastic (results in expectation)

(3-IC)-CWN

?

DGN

2-IGN / 2-GNN

?

?

(3-W
L)

(k-W
L)

Caveats

convergence
tuning / selection
preprocessing
invariance

unproven low./upp.

? unknown relation

k-SAN

?

k-CLIP

Graphormer

H-GSN

(k-CL)-CWN

?
?

?

node-based 
Subgraph GNNs

?

(k–2)-OSAN
k-IGN /  k-GNN

SUN

DSS-GNN

DS-GNN / 1-OSAN

?

3-IGN / 3-GNN

(k–1)-Folklore GNN (/-
PPGN)

𝛅-k-LWL+

?

?

Source: Bevilacqua, Frasca, Maron: LoG Tutorial 2022



Takeaways

• Message-Passing GNNs are upper-bounded in their expressive power by the 
Weisfeiler-Lehman graph isomorphism test

• Several ways to enhance expressive power:

• Higher-order WL-tests 

• Structural and positional encoding

• Subgraph aggregation methods

• Graph lifting to simplicial/cellular complexes & topological message passing

• Generalisation power of GNNs is an open question

• Next: is Weisfeiler-Lehman formalism the end of story? (No!)



Key Concepts

• Graph isomorphism

• Weisfeiler-Lehman tests

• Positional and structural coding

• Reconstruction Conjectures 



Main References

• M. Bronstein et al., Geometric deep learning, arXiv:2104.13478, 2021. Section 4.1 “Graphs and 
sets” and Section 5.3 “Graph neural networks”

• C. Morris et al., Weisfeiler and Leman go Machine Learning: The Story so far, 
arXiv:2112.099992, 2021. Introductory text on k-WL tests and various equivalent GNNs

• B. Bevilacqua, F. Frasca, H. Maron, Exploring the practical and theoretical landscape of 
expressive GNNs, LoG tutorial 2022. Expressive power and advanced GNN architectures

https://arxiv.org/pdf/2104.13478.pdf
https://arxiv.org/pdf/2112.09992.pdf
https://www.youtube.com/watch?v=ASQYjbUBYzs
https://www.youtube.com/watch?v=ASQYjbUBYzs


Additional References

• Z. Chen et al., On the equivalence between graph isomorphism testing and function 
approximation with GNNs, NeurIPS 2019. Universal approximation in GNNs

• K. Xu et al., How powerful are graph neural networks?, ICLR 2019. Proof of equivalence 
between WL-test and MPNN + GIN architecture

• M. Bronstein, L. Cotta, F. Frasca, H. Maron, Using subgraphs for more expressive 
GNNs, Towards Data Science blog post 2021. Diverse subgraph methods + Reconstruction 
conjectures

• C. Bodnar, F. Frasca, et al., Weisfeiler and Lehman go cellular: CW networks, NeurIPS
2021. Topological message passing

https://proceedings.neurips.cc/paper/2019/file/71ee911dd06428a96c143a0b135041a4-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/71ee911dd06428a96c143a0b135041a4-Paper.pdf
https://openreview.net/pdf?id=ryGs6iA5Km
https://towardsdatascience.com/using-subgraphs-for-more-expressive-gnns-8d06418d5ab
https://towardsdatascience.com/using-subgraphs-for-more-expressive-gnns-8d06418d5ab
https://openreview.net/pdf?id=uVPZCMVtsSG


Message passing 
function

Aggregation 
operator

Computational 
graph

𝐱, ← 𝜙 𝐱, , , , -
0∈𝒩!

	 𝜓 𝐱, , 𝐱0 	

𝑗

Main Ingredients of an MPNN

𝑖



GNN expressive power 

Weisfeiler-Lehman hierarchy

1-WL

2-WL

3-WL

in
cr

ea
sin

gl
y 

ex
pr

es
siv

e t
es

t

d-regular

CFI graphs

Weisfeiler, Lehman 1968 (2-WL); Babai, Mathon 1979 (k-WL) 
Cai, Furer, Immerman 1992 (CFI graphs)

strongly regular

k-GNNs

MPNNs
Xu et al. 2019

Maron et al. 2020; Morris et al. 2019

Subgraph Union Network
Frasca et B 2022

k-WL



GNN expressive power 

Weisfeiler-Lehman hierarchy

in
cr

ea
sin

gl
y 

ex
pr

es
siv

e t
es

t

d-regular

CFI graphs

Weisfeiler, Lehman 1968 (2-WL); Babai, Mathon 1979 (k-WL); 
Cai, Furer, Immerman 1992 (CFI graphs)

strongly regular

2 triangles

1 triangle

1 4-clique

Bouritsas, Frasca et B 2020

Structural encoding

1-WL

2-WL

3-WL

k-WL



GNN expressive power 

Weisfeiler-Lehman hierarchy

1-WL

2-WL

3-WL

in
cr

ea
sin

gl
y 

ex
pr

es
siv

e t
es

t

d-regular

CFI graphs

Weisfeiler, Lehman 1968 (2-WL); Babai, Mathon 1979 (k-WL); 
Cai, Fürer, Immerman 1992 (CFI graphs)

strongly regular

k-WL

Gap between 
Theory & Practice

“Graph rewiring”

Graphs may be unfriendly for 
message passing resulting in 

“bottlenecks”

Alon, Yahav 2020 (bottlenecks); Hamilton et al. 2017 (neighbour 
sampling); Klicpera et al. 2019 (diffusion); Topping, Di Giovanni 
et B 2022 (Ricci flow); Deac et al. 2022 (expanders)



DeepSet/PointNet
no graph

GNN
input graph

Transformer
learnable graph

Equivariant GNN
+data symmetry 

group

Cellular GNN
high-order 

complex

Positional encoding
+extra features

Subgraph GNN
product symmetry

group

M O R E     S T R U C T U R E

LESS INTERACTION MORE INTERACTION

CNN
canonical node 

ordering



DeepSet/PointNet
no graph

GNN
input graph

Transformer
learnable graph

Equivariant GNN
+data symmetry 

group

Cellular GNN
high-order 

complex

Positional encoding
+extra features

Graph rewiring
precomputed graph

Subgraph GNN
product symmetry

group

M O R E     S T R U C T U R E

LESS INTERACTION

CNN
canonical node 

ordering



TRANSFORMERS



What graph should we use in GNNs?

GNN
input graph

LESS INTERACTION MORE INTERACTION

DeepSet
no graph at all

?
Complete graph

– Throws away  
    important data

+ Learn the “right”
   graph for the task
– High complexity
– “Too much flexibility”



Transformers

• Assume the graph is complete (every node is connected to every node)

• Apply a Convolutional GNN:

ϕ 𝐱! , J
#∈𝒩4

𝑎!#ψ 𝐱#



Transformers

• Assume the graph is complete (every node is connected to every node)

• Apply a Convolutional GNN:

ϕ 𝐱! ,J
#;0

<

𝑎!#ψ 𝐱#

equal for every node!



Transformers

• Assume the graph is complete (every node is connected to every node)

• Apply an Attentional GNN:

ϕ 𝐱! ,J
#;0

<

𝛼 𝐱! , 𝐱# ψ 𝐱#

• Attention weights = learned graph adjacency on the downstream task

• Transformer architecture, which has recently become predominant in NLP task, is a 
special type of GNN!

Vaswani et al. 2017; Joshi 2020



Transformers

• Assume the graph is complete (every node is connected to every node)

• Apply an Attentional GNN:

ϕ 𝐱! ,J
#;0

<

𝛼 𝐱! , 𝐱# , 𝐩! , 𝐩# ψ 𝐱#

• Attention weights = learned graph adjacency on the downstream task

• Transformer architecture, which has recently become predominant in NLP task, is a 
special type of GNN!

• Tasks in NLP often require position-dependent functions (not permutation-invariant), 
which is achieved through positional encoding

Vaswani et al. 2017; Joshi 2020



Transformers

Vaswani et al. 2017; Joshi 2020



Positional encoding
Po

si
tio

n

Embedding dimension

Typical positional encoding used in Transformers on a 1D grid



Positional encoding

Substructures of size 𝑘

Unique?

Yes

No 
23  sign flips

𝑘 Laplacian eigenvectors

Complexity

YesRandom Walk kernels

𝒪 𝑛3 *

𝒪 𝑛8 ÷ 𝒪 𝑛= **

𝒪 𝑛8 ÷ 𝒪 𝑛= ∗∗

*In practice better for many substructures such as triangles 
**Depending on the sparsity of the Laplacian 



Supervision 
signal

geometric
(local structure)

semantic

Wang et B 2018



Differentiable Graph Module (DGM) allowing to construct the graph 
from the data and use it for feature learning

Disease classification accuracy

Differentiable Graph Module

Kazi, Cosmo et B 2020



Latent Simplicial Complex Learning

Battiloro et B, Scardapane, Di Lorenzo 2024 Differentiable Cell Complex Module



OVERSQUASHING & 
GRAPH REWIRING



What graph should we use in GNNs?

Classical MPNN
input graph

DeepSet
no graph at all

Transformers
complete graph

– Throws away  
    important data

+ Learn the “right”
   graph for the task
– High complexity
– Hard to generalise

Graph rewiring
add/remove edges



What graph should we use in GNNs?

𝐺



What graph should we use in GNNs?

• Preserve locality (“input graph inductive bias”)
• Preserve sparsity (computational efficiency)
• Improve connectivity (to reduce over-squashing)

𝐺′

Barbero, Velingker, Saberi, B, Di Giovanni 2023



“Failure of Message Passing to propagate 
information on the graph”



Over-squashing = Fast volume growth 
                                    + Long-range interactions

Alon, Yahav 2020

Over-squashing

task

graph topology

In small-world graphs metric ball volume grows 
exponentially with ball radius



Over-squashing

Topping, Di Giovanni et B 2021; Di Giovanni et B 2023

• Consider an MPNN of the form

𝐱!
3/0 = 𝜎 𝐖0𝐱!

3 +J
#

𝑎!#𝐖8𝐱#
3

• 𝐿 = depth (number of layers)
• 𝑝 =width (hidden dimension)
• Nonlinearity 𝜎 is 𝑐>-Lipschitz-continuous
• 𝑤 =	maximum element of weight matrices 𝐖0, 𝐖8

fr
om

𝑥/

𝑥0

a distant nod
e

update

Over-squashing: small Jacobian 

𝜕𝐱/
= /𝜕𝐱0

>  indicates poor 
information propagation from 
input node

Theorem (Sensitivity bound): For any 𝑖, 𝑗 ∈ 𝑉
?𝐱4

?

?𝐱;
@

0

≤ 𝑐A𝑤𝑝 A 𝐈 + 𝐀 !#
A  

model topology



Preventing over-squashing

Di Giovanni et B 2023

• Width 𝑝 helps mitigate over-squashing (potentially at the risk of worse generalization)

• Depth 𝐿 does not help 
• If 𝐿~diam 𝐺 , over-squashing occurs between distant nodes
• If 𝐿 ≫ 1, we transition from over-squashing to vanishing gradients

• Topology of 𝐺 has the largest effect on over-squashing, which occurs
• Between nodes with high effective resistance Res 𝑖, 𝑗 ∝ 𝜏 𝑖, 𝑗 = commute time
• On graphs with small Cheeger constant ℎ 𝐺 = energy required to disconnect the graph into 

two communities)
• Edges with strongly negative discrete Ricci curvature 𝜅 𝑖, 𝑗

?𝐱4
?

?𝐱;
@

0

≤ 𝑐A𝑤𝑝 A 𝐈 + 𝐀 !#
A  

model topology



Chandra et al. 1996

• Commute time 𝜏 𝑖, 𝑗 = expected number of steps a random walk on a graph starting 
from node 𝑖 will take to reach node 𝑗 and come back

• Effective resistance Res 𝑖, 𝑗 = voltage difference between nodes 𝑖 and 𝑗 if a unit 
current flows through the graph where every edge has unit resistance

Effective Resistance & Commute Time

𝜏 𝑖, 𝑗 = 2 𝐸 Res 𝑖, 𝑗



(Cheeger 1970)

• The Cheeger constant of a graph 𝐺 = 𝑉, 𝐸  is defined as

ℎ 𝐺 = min
B⊂D

𝑖, 𝑗 ∈ 𝐸	 s. t. 	𝑖 ∈ 𝑈	 and	 𝑗 ∈ 𝑉 ∖ 𝑈
min vol 𝑈 , vol 𝑉

     where vol 𝑈 = ∑#∈B 𝑑! .

Cheeger constant



(Cheeger 1970)

• The Cheeger constant of a graph 𝐺 = 𝑉, 𝐸  is defined as

ℎ 𝐺 = min
B⊂D

𝑖, 𝑗 ∈ 𝐸 s. t. 𝑖 ∈ 𝑈 and 𝑗 ∈ 𝑉 ∖ 𝑈
min vol 𝑈 , vol 𝑉

     where vol 𝑈 = ∑#∈B 𝑑! .

Cheeger constant



(Cheeger 1970)

• The Cheeger constant of a graph 𝐺 = 𝑉, 𝐸  is defined as

ℎ 𝐺 = min
B⊂D

𝑖, 𝑗 ∈ 𝐸	 s. t. 	𝑖 ∈ 𝑈	 and	 𝑗 ∈ 𝑉 ∖ 𝑈
min vol 𝑈 , vol 𝑉

     where vol 𝑈 = ∑#∈B 𝑑! .

• Energy required to disconnect 𝐺 into separate communities 
(”bottleneck” if ℎ is small)

• Cheeger inequality: 2ℎ 𝐺 ≥ 𝜆0 >
EA "
8

, where 𝜆0 is the first non-
zero eigenvalue (“spectral gap”) of the normalised graph Laplacian

Cheeger constant



Preventing over-squashing

Di Giovanni et B 2023
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model topology

𝑥/

𝑥0

𝑥/

𝑥0



When oversquashing might occur?

Grid TreeClique



Ricci 1903

Ricci Curvature on Manifolds

Euclidean (=0) Hyperbolic (<0)Spherical (>0)

“geodesic dispersion”

𝑝 𝑞



Graph analogues of Ricci curvature

𝑝
𝑞

𝑘

Grid (=0) Tree (<0)Clique (>0)



Forman 2003; Ollivier 2007; Topping, di Giovanni, et B. 2021

Graph Ricci curvature

• Multiple definitions of curvature on graphs, two main

• Forman (combinatorial)

• Ollivier (optimal transport)

• Balanced Forman Curvature of edge 𝑖~𝑗 in simple unweighted graph is 

• κ 𝑖, 𝑗 =0 if min 𝑑!, 𝑑# = 1, otherwise

• κ 𝑖, 𝑗 = 8
.4
+ 8

.;
+ 2 ♯∆ !,#

FGH .4 ,.;
+ ♯∆ !,#

FIJ{.4 ,.;}
+ MCDE

F9

FGH{.4 ,.;}
♯□! 𝑖, 𝑗 + ♯□

# 𝑖, 𝑗 − 2

Triangles based at i~j 

Neighbours of i forming a 4-cycle 
based at i~j (w/o diagonals)

Max number of 4-cycle based at i~j 
traversing the same node

Degree of i



Forman 2003; Ollivier 2007; Topping, di Giovanni, et B. 2021

Graph Ricci curvature

• Multiple definitions of curvature on graphs, two main

• Forman (combinatorial)

• Ollivier (optimal transport)

• Balanced Forman Curvature of edge 𝑖~𝑗 in simple unweighted graph behaves 
similarly to the continuous Ricci curvature

Grid 𝐺6:  0 Tree 𝑇G :  H
GI-

− 2Clique 𝐾6:  6
6J-

𝐶6KL:  0Cycle 𝐶M:   M
N

𝐶H:  1



What contributes to over-squashing?

Topping, Di Giovanni et B 2021; *No contradiction to using expander graphs (which have negative curvature)

Theorem: (informal) strong negatively-curved edges contribute to over-squashing.

𝑝
𝑞

𝑘

Grid (=0) Tree (<0)Clique (>0)



Topping, di Giovanni, et B. 2021

Curvature-based rewiring

Input: graph 𝐺 = 𝑉, 𝐸 , temperature 𝜏 > 0, (optional 𝐶)

• For edge 𝑖~𝑗 with smallest κ 𝑖, 𝑗

• Calculate the improvement 𝛿3N = κ"O 𝑖, 𝑗 − κ 𝑖, 𝑗  from 
adding edge 𝑘~𝑙 with 𝑘 ∈ 𝐵0 𝑖  and 𝑙 ∈ 𝐵0 𝑗  

• Sample index 𝑘, 𝑙 with probability Softmax 𝜏𝛿3N  and add 
edge 𝑘~𝑙 to 𝐸)

• (optional) Remove edge 𝑖~𝑗 with largest Ric 𝑖, 𝑗 > 𝐶

Output: new graph 𝐺 ) = 𝑉, 𝐸)

𝑗𝑖

𝑘
𝑙



Ricci 1903; Hamilton 1988;

Ricci flow

• Ricci flow: “diffusion of the Riemannian metric”
𝜕𝑔!#
𝜕𝑡

= 𝑅!#

Evolution of a manifold under Ricci flow

G. Ricci-Curbastro R. Hamilton



Ricci 1903; Hamilton 1988; Perelman 2003

G. Ricci-Curbastro R. HamiltonG. Perelman



Topping, di Giovanni, et B. 2021; Klicpera et al. 2019 (DIGL)
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What contributes to over-squashing?

Di Giovanni, Giusti, Barbero, Luise, Lio’, B 2023
1Arnaiz-Rodriguez et al. 2022 (DiffWire); 2Karhadkar et al. 2022; 3Abboud et al. 2022; 4Mialon et al. 2022; 5Abu-El-Haija et al. 2019; 3Deac et al. 2022 (EGP) &many more  

Theorem: (informal) large commute-time distances contribute to over-squashing.

• Spectral rewiring:1,2 increase the Cheeger 
constant of the graph (“clusteredness”), 
which leads to lower commute time  

• Spatial rewiring:3-5 inserting edges reduces 
the total effective resistance of the graph 
(=commute-time distance up to scale)

• Bounded-degree expanders6 have commute 
time 𝑂 |𝐸| ; over-squashing effect is 
independent on the size of the graph 

Original 
graph

Spectral 
rewiring

Spatial 
rewiring

0
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Graph Rewiring Approaches

Discrete Ricci flow
(SDRF)

Topping, Di Giovanni et B. 2022

Connectivity Diffusion
(DIGL)

Gasteiger et al. 2019

Expander Propagation
(EGP)

Deac et al. 2022

• KNN graph on PPR embedding
+ Good for homophilic graphs
– Bad for heterophilic graphs
– Drastically different graph

• Fixed expander graph
• Alternate MP on original and 
   new graph
+ Optimal graph for MP
– No relation to input graph
– No permutation equivariance

• Remove negatively-curved edges
+ Good for both homophilic and
   heterophilic graphs
+ “Surgical” rewiring
– Curvature is computationally  
   expensive

No relation to the task!



Why it is important to consider the task?

Same graph+features, different task

Coulomb interactionsVan der Waals interactions

∝ 𝑟60∝ 𝑟608

Whether the graph is good depends on the task!



LONG-RANGE INTERACTIONS & 
EXPRESSIVE POWER



Long-range interactions in graph tasks

Di Giovanni, Rusch, B, Deac, Lackenby, Mishra, Veličković 2023

• Task = a function 𝑓 𝐗  on the node features of a graph 𝐺
• The interaction between features in nodes 𝑖 and 𝑗 required for the task is given by  

Mixing of 𝑓: mixO 𝑖, 𝑗 = max
𝐗

max
0Q2,RQ.

𝜕8𝑓 𝐗

𝜕𝑥!
2𝜕𝑥#

R

• 𝑓 𝐗 = 𝜙 𝐱! + 𝜙 𝐱#  is fully separable, thus mixO 𝑖, 𝑗 = 0

• 𝑓 𝐗 = 𝜙 𝐱!, 𝐱#  mixing depends on how non-linear 𝜙 is 



Capacity bounds

Di Giovanni, Rusch, B, Deac, Lackenby, Mishra, Veličković 2023

mixing
What is the capacity of MPNN required for a given task?

model + topology

mixO 𝑖, 𝑗 ≤ J
3;0

A60

𝑐A𝑤 8A6360 𝑤 𝐒A63
&
diag 𝟏&𝐒3 𝐒A63 + 𝐶𝐐3

!#
model topologytask



Capacity bounds

Di Giovanni, Rusch, B, Deac, Lackenby, Mishra, Veličković 2023

Bound on weights 𝑤

𝑤 ≥
𝑑FIJ
𝑐8

mixO 𝑖, 𝑗
𝑞

0/. !,#

• 𝑑FIJ =min node degree
• Fixed depth 𝐿 = 𝑑 𝑖, 𝑗 /2  
• 𝑞 =number of paths of length 𝑑 𝑖, 𝑗  

between 𝑖 and 𝑗

Bound on depth 𝐿

𝐿 ≥
𝜏 𝑖, 𝑗
4𝑐8

+
|𝐸|
𝑑!𝑑#

𝛼mixO 𝑖, 𝑗 − 𝛽

• 𝑑! =degree of node 𝑖
• 𝛼,𝛽 =model-related constants
• 𝐸 =number of edges
• Bounded weights 

mixO 𝑖, 𝑗 ≤ J
3;0

A60

𝑐A𝑤 8A6360 𝑤 𝐒A63
&
diag 𝟏&𝐒3 𝐒A63 + 𝐶𝐐3

!#



Capacity bounds

Di Giovanni, Rusch, B, Deac, Lackenby, Mishra, Veličković 2023

Bound on weights 𝑤

𝑤 ≥
𝑑FIJ
𝑐8

mixO 𝑖, 𝑗
𝑞

0/. !,#

Bound on depth 𝐿

𝐿 ≥
𝜏 𝑖, 𝑗
4𝑐8

+
|𝐸|
𝑑!𝑑#

𝛼mixO 𝑖, 𝑗 − 𝛽

“weights need to be large enough 
to allow mixing” 

• Depth must be ~commute time 𝜏 𝑖, 𝑗
• Rewiring tries to improve 𝜏
• 𝜏	can be as large as 𝑂 𝑛= , which implies 

impossibility statements

mixO 𝑖, 𝑗 ≤ J
3;0

A60

𝑐A𝑤 8A6360 𝑤 𝐒A63
&
diag 𝟏&𝐒3 𝐒A63 + 𝐶𝐐3

!#



New way of characterising expressive power

Di Giovanni, Rusch, B, Deac, Lackenby, Mishra, Veličković 2023

B. WeisfeilerA. Lehman

Expressive power (informal): MPNN with 𝐿 ≤ 𝑛 
layers cannot learn tasks that require high mixing 
among features at nodes with large commute time.  



EXOTIC MESSAGE PASSING
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What + Where + When



Classical MPNN Graph Transformer
Gutteridge, Di Giovanni et B 2023



Gutteridge, Di Giovanni et B 2023

Dynamic Rewiring 
(DRew)

Dynamic Rewiring + delay 
(𝝼DRew)



Gutteridge et B 2023

Evaluation on Long-Range Graph Benchmark

Table 1

Model
Peptides-func Peptides-struct PCQM-Contact PascalVOC-SP

AP " MAE # MRR " F1 "
Classical MPNN 0.6069±0.0035 0.3357±0.0006 0.3242±0.0008 0.2860±0.0085

Rewiring+MPNN (DIGL) 0.6830±0.0026 0.2616±0.0018 0.1707±0.0021 0.2921±0.0038

Multi-hop (MixHop-GCN) 0.6843±0.0049 0.2614±0.0023 0.3250±0.0010 0.2506±0.0133

Graph Transformer (GT) 0.6326±0.0126 0.2529±0.0016 0.3174±0.0020 0.2694±0.0098

GraphGPS (GT+MPNN) 0.6535±0.0041 0.2500±0.0005 0.3337±0.0006 0.3748±0.0109

⌫DRew-MPNN 0.7150±0.0044 0.2536±0.0015 0.3442±0.0006 0.3314±0.0024

Experimental validation
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Finkelshtein, Huang, B, Ceylan 2023

Cooperative Message Passing

Standard Message Passing 
each node Broadcasts & Listens

Cooperative Message Passing 
each node individually decides 



Finkelshtein, Huang, B, Ceylan 2023

Cooperative Message Passing

Broadcast & 
Listen

Listen Broadcast Isolate
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Finkelshtein, Huang, B, Ceylan 2023

Cooperative Message Passing



Takeaways

• Input graph is not necessarily the best choice for message passing

• Graph rewiring separates input & computational graphs in attempt to avoid over-
squashing

• Various rewiring techniques based on 

• Discrete Ricci curvature

• Commute time / resistance distances

• Spectral properties such as ”connectedness”

• The graph structure impacts the expressive power of MPNN, which can be captured 
through the mixing ability of the GNN

• Advanced rewiring: dynamic (DReW) or implicit (cooperative GNNs)



Key Concepts

• Transformers and latent graph learning

• Graph rewiring

• Graph Ricci curvature 

• Commute time 

• Dynamic rewiring

• Co-operative GNNs
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