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Outline

We now move to Sets to Graphs
Sets can be considered as “node-only” Graphs without edges
Graphs are a very versatile abstraction used ubiquitously in sciences

For many years, Geometric Deep Learning was nearly synonymous with Graph
Representation Learning



Michael M. Bronstein, Joan Bruna, Yann LeCun,
Arthur Szlam, and Pierre Vandergheynst

any scientific fields study data with an underlying
structure that is non-Euclidean. Some examples
include social networks in computational social sci-
ences, sensor networks in communications, func-
tional networks in brain imaging, regulatory networks in
genetics, and meshed surfaces in computer graphics. In
many applications, such geometric data are large and com- ®
plex (in the case of social networks, on the scale of billions)
and are natural targets for machine-learning techniques.
In particular, we would like to use deep neural networks,
which have recently proven to be powerful tools for a broad
range of problems from computer vision, natural-language
processing, and audio analysis. However, these tools have
been most successful on data with an underlying Euclidean or
grid-like structure and in cases where the invariances of these
structures are built into networks used to model them.
Geometric deep learning is an umbrella term for emerging ;
techniques attempting to generalize (structured) deep neural mod- i [ J
els to non-Euclidean domains, such as graphs and manifolds. The / ‘ @
purpose of this article is to overview different examples of geometric
deep-learning problems and present available solutions, key difficul-
ties, applications, and future research directions in this nascent field.

Overview of deep learning

Deep learning refers to learning complicated concepts by building them from

simpler ones in a hierarchical or multilayer manner. Artificial neural networks are

popular realizations of such deep multilayer hierarchies. In the past few years, the growing

computational power of modern graphics processing unit (GPU)-based computers and the avail-

ability of large training data sets have allowed successfully training neural networks with many layers

and degrees of freedom (DoF) [1]. This has led to qualitative breakthroughs on a wide variety of tasks, from
speech recognition [2], [3] and machine translation [4] to image analysis and computer vision [S]-[11] (see [12]

Geometric Deep Learning

Going beyond Euclidean data



Graphs = Systems of Relations and Interactions

Molecules Interactomes Social networks



Why Graphs?

Simple mathematical abstraction for systems of relations or interactions

Very well developed theory

Many successful applications from chemistry to social media to even pure math
In many ways, graphs are the main modality of data we receive from Nature

Graph representation learning is likely critical on the path to Artificial General
Intelligence (AGI).



Why Graphs?

“The image of the world around us, which we carry
in our head, is just a model. Nobody in his head
imagines all the world, government or country. He
has only selected concepts, and relationships between
them, and uses those to represent the real system.”

—TJay Forrester on mental models (1971) .
Jay Wright Forrester

Forrester 1971



Origins of Graph Theory

The soluton of the classical problem of the “Bridges of

Ko6nigsberg” by Euler in 1736 first showed the power of graphs to
abstract out the geometry (“geometria situs”)

Euler 1741



Origins of Topology

Poincaré’s “analysis situs.”
JOURNAL
L'ECOLE POLYTECHNIQUE.

appeared in a supplement S —

ANALYSIS SITUS;

published in 1904. —

His famous Conjecture

INTRODUCTION,

La Géométrie & n dimensions a un objet réel; personne n'en doute
anjourd'hui. Les étres de Ihyperespace sent susceptibles de définitions
précises comme cenx de Fespace ordinaire, et si nous ne ponvons nous

les représenter, nous pouvons les cancevoir et les étudier. Si done, par
exemple, Ia Mécanique i plus de trois dimensions doit étre condamnée

<
comme dépourvue de tout objet, il w'en est pas de méme de MHlypergéo- . \ \ \
meétrie. @aai U

1a Géométrie, en effet, w'a pas pour unique raison d'étre la deseription /% 3
immédiate des corps qui tombent sous tios sens : elle est avant tont 2
Vétude analytique d'un groupe; rien n'empéche, par conséquent, d'abors |

e s e g o \: H. Poincaré L. Euler

Mais pourquoi, dira-t-on, ne pas conserser le langage aualytique et le "\ |

remplacer par un langage géométrique, qui perd tous ses avantages dés
queles sens ne peuvent plus intervenir. Cest que ce langage nouvean est
plus coneis; c'est ensuite que Fanalogie aee la Géométrie ordinaire peat
créer des associntions d'idées févondes et suggérer des généralisations
utiles.

LEP, s (Ca" 1)

Euler 1741; Poincaré 1895



Origin of the name “Graph”

CHEMISTRY AND ALGEBRA

IT may not be wholly without interest to some of the

readers of NATURE to be made acquainted with
an analogy that has recently forcibly impressed me
between branches of human knowledge apparently so
dissimilar as modern chemistry and modern algebra.

The weight of an invariant is identical with the number
of the bonds in the chemicograph of the analogous
chemical substance, and the weight of the leading term
(or basic differentiant) of a co-variant is the same as the
number of bonds in the chemicograph of the analogous
compound radical. Every invariant and covariant thus
becomes expressible by a grapk precisely identical with a
Kekuléan diagram or chemicograph.

Baltimore, January 1 " J.J. SYLVESTER

The term “graph” appeared first in the
chemical context

Sylvester 1878
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GRAPHS: THE BASICS




Types of Learning Tasks on Graphs

Graph regression Node classification Link prediction
water solubility? who is a spammer WTF (whom to follow)?



Invariant vs Equivariant tasks

water solubility? who is a spammer?



GNNs = Parametric graph functions

— Jo [

Graph+Features

Note: we use the term “GNN” to refer to general parametric graph functions. The particular class of GNNs we
consider are Message Passing Neural Networks (MPNNs). Petar Velickovi¢ argues that “it’s all message passing”



Types of Learning Tasks on Graphs

Z; Node-wise

Z; Graph-wise

—{ GNN —

Input graph ‘7 Embedding

—=§> z,; Edge-wise

v



Transductive vs Inductive tasks

Training Transductive Inductive
same graph, different graph
different nodes



Graphs: The Basics

A graph is a pair ¢ = (V,E)
IV = vertices (or nodes)

E € VXV = edges (or links). If (u,v) € E, we will
write u~v

Edges in general are directed, i.e., we might
have u~v but not v~u.




Graphs: The Basics

A graph is a pair ¢ = (V,E)
IV = vertices (or nodes)

E € VXV = edges (or links). If (u,v) € E, we will
write u~v

Edges in general are directed, i.e., we might
have u~v but not v~u.

Nodes and edges can have attributes. We will
typically assume

d-dimensional vector node features, denoted x,,

scalar edge weights, denoted w,,,




Extensions of Graphs

N oL

Multigraph Hypergraph Cellular complex



Representations of Graphs as matrices

Feature
matrix nxd

O 00N O Ul A WIN -

=
— o

X

Nodes indexed as V = {1, ..., n} in arbitrary order

Node features stacked row-wise in an nXd matrix X



Representations of Graphs as matrices

Adjacency Feature
matrix nXn matrix nXd

O 00N O Ul A WIN -

=
— o

X
Nodes indexed as V = {1, ..., n} in arbitrary order
Node features stacked row-wise in an nXd matrix X

Graph structure represented by nxn adjacency matrix A with a;; = 1iff i~j



Representations of Graphs as matrices

Adjacency Feature
matrix nXn matrix nXd

I

O 0O N O Ul b WIN -
O 00N O Ul A WIN -

[EEGEY
[ )
=
— o

X

The ordering of nodes is arbitrary!



What do we want now with Graphs?

f = f

The function now also depends on edges (adjacency A) in addition to node features X
Permutation invariance: f(PX,PAPT) = f(X,A)

Permutation equivariance: F(PX,PAPT) = PF(X,A)



Invariant Graph Functions

N
A..l
<

\—’/
S

f(PX,PAP")




Equivariant Graph Functions

F(PX,PAP") = PF(X A)




DeepSets

On sets, we can only process each node independently
(or all together)



Graph Neural Networks

On graphs, we have a notion of a neighbourhood of ever node
Ni=U€eV: i~jj



Neighbour Aggregation

netghbourhood
W, = i)

multiset of
neighbour features

i

X, = Xjen; }




Neighbour Aggregation

local function

T R
A x;
o|EH,,
- J

permutation invariant



GNN Layer

(_ ¢(x1’XN1) B \
FOX,A) = | = o(xxn) -

— (%n X)) —

permutation equivariant



GNNs as an Instance of Geometric Deep Learning Blueprint

Graph ¢ = (V,E) Node features X (G) Functions T(X(G))

Permutation group Permutation matrix Message passing

TES, PX, PAP ' F(PX,PAPT) = PF(X,A)



GNN FLAVOURS




Convolutional GNNs

Defferard et al. 2016; Kipf, Welling 2016 (GCN)

¢ (Xi' ; a;jh(x;) )



Convolutional GNNs

Defferard et al. 2016; Kipf, Welling 2016 (GCN)

Aim

@D/aﬂ
¢ (Xi' ; ayh(x;) )



Convolutional GNNs

Defferard et al. 2016; Kipf, Welling 2016 (GCN)

g ®

¢ (Xi: z ay (%) )
jEN; ,



Convolutional GNNs

Defferard et al. 2016; Kipf, Welling 2016 (GCN)
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feature



Convolutional GNNs

Defferard et al. 2016; Kipf, Welling 2016 (GCN)

g ®©
¢ | my, Z al-ijj)

JEN; 7

wode
feature



Convolutional GNNs

Simplest GNN @\ T

Highly scalable
Industrial use cases

Folklore: works only on
homophilic graphs

Defferard et al. 2016; Kipf, Welling 2016 (GCN)
Rossi, Frasca et B 2020 (SIGN); Ying et al. 2018 (PinSAGE)

ik
Aim
Qi AN
X « o(AXW)



Attentional GNNs

Monti et B 2017; Veli¢kovi¢ et al. 2018 (GAT)

m

g e

¢ (Xir Z ety (%5, %5 )10 (x;) >

JEN;



Message-Passing GNNs

¢ | Xi, z P(xqx;)

JEN;

Gilmer et al. 2017 (MPNN); Battaglia et al. 2018 (Graph Networks)
Wang et B, Solomon 2018 (edgeconv)



Flavours of GNNs

@\ A @\ Aig @ m;;
m;:
aij al-j U
\&%@ e ® e ®
Aim Aim m;,
ai AN ; .

Convolutional Attentional Generic Message Passing
¢ <Xi; Z aiij(Xj)) cC ¢ <Xi: z aij(xirxj)lp(xj)> C ¢ (Xi; Z Y(x,x;) >
JEN JEN JEN;



Flavours of GNNs

aij
\&am—@
Aim
aj; \

Convolutional

AX

IN

)

Aim

g ®

Attentional

AX)X

Generic Message Passing

A(X)



MAIN INGREDIENTS OF AN MPNN




Main Ingredients of an MPNN




Main Ingredients of an MPNN

X; < ¢ <Xi» P(x;,x;) >

TEN

Message passing
function



Main Ingredients of an MPNN

X; < ¢<Xi» I:I P(x, %)) >

JEN;

Message passing Aggregation
function operator



Main Ingredients of an MPNN

Message passing
function

X; < ¢ (Xi» D Y(x;, ;)

JEN;

Aggregation
operator

Donald J. Trump &

@realDonaldTrump

45th President of the United States of America®™
© Washington, DC (& Vote.DonaldJTrumg
51 Following 88.7M Followers

n ([ Joined March 2009

)

Computational

graph




Main Ingredients of an MPNN

X; < ¢<Xi» I:I P(x, %)) >

JEN;

Message passing Aggregation Computational
function operator graph



EXPRESSIVE POWER OF GNNS




Graph isomorphism

G = (V,E) G =V E

Two graphs G = (V,E) and G’ = (V', E’) are isomorphic if there exists an edge-preserving
bijection @:V = V' s.t. u~v in G iff e(u)~@(v) in G’



Graph isomorphism

=4 T

G =(V,E) G¢' =V E)

Two graphs G = (V,E) and G’ = (V', E’) are isomorphic if there exists an edge-preserving
bijection @:V = V' s.t. u~v in G iff e(u)~@(v) in G’

Note: @ is not unique where the graph has symmetries (edge-preserving automorphism)



Graph isomorphism

¢

G =,E) G'=U',E")

Two graphs G = (V,E) and G’ = (V', E’) are isomorphic if there exists an edge-preserving
bijection @:V = V' s.t. u~v in G iff e(u)~@(v) in G’

A set of graphs isomorphic to each other is an isomorphism class

Complexity of computing graph isomorphism is an open question (“NP intermediate”:
not NP but also no polynomial time algorithm currently known)



Attributed graph isomorphism

¢

G =V, EX) G =W EX)

Two node-attributed graphs G = (V,E,X) and G' = (V',E’,X") are isomorphic if there
exists a bijection @:V — V' s.t.

Structure preservation: u~vin G iff (u)~@((v) in G’

!

Feature preservation: Xy = Xp@)



Universal Approximation on Graphs

Theorem: A class of functions is universally approximating permutation-
invariant functions on graphs with finite node features iff it can discriminate

graph isomorphisms.

Universal approximation on graphs is
equivalent to graph isomorphism testing

Chen 2019



What graphs can MPNNs represent?

Isomorphic

MPNN

graphs

Isomorphic graphs have identical representations

g

Adapted from Bevilacqua et al.
(LoG Tutorial 2022)



What graphs can MPNNs represent?

Isomorphic

MPNN

graphs

Isomorphic graphs have identical representation

g

Adapted from Bevilacqua et al. 1 1st1 1 -1 1
(LoC Tutorial 2022) indistinguishable non-isomorphic graphs)

The converse is not true! (there might be



Expressive power of MPNNs

All graph-isomorphism
discriminating functions

All permutation-
invariant functions

Adapted from Bevilacqua et al.
(LoG Tutorial 2022)



WEISFEILER-LEHMAN TEST




Weisfeiler-Lehman Test

Weisfeiler, Lehman 1968
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Weisfeiler-Lehman Test

$(0,{0,0,0})

Weisfeiler, Lehman 1968



Weisfeiler-Lehman Test

$(0,{0,0,0})

$(G,{0,0})

Weisfeiler, Lehman 1968



Weisfeiler-Lehman Test

$(0,{0,0,0})



Weisfeiler-Lehman Test

$(0,{0,0,0})

S

$(S,{0,0})

Weisfeiler, Lehman 1968



Weisfeiler-Lehman Test
$(O,{0,0,0))

¢(O{O,0h)

>

$(O{O,0h)



Weisfeiler-Lehman Test

SRS ICE

Weisfeiler, Lehman 1968



Weisfeiler-Lehman Test

SESSECIC I
Ay Py By Ayl

Weisfeiler, Lehman 1968



.1 VAa

non-isomorphic graphs that are WL-equivalent

Necessary but insufficient condition for
graph isomorphism!



What does WL test see?

Lol U




What WL cannot test?

Example of non-isomorphic graphs that cannot be distinguished
by Weisfeiler-Lehman test (outputs “possibly isomorphic”)

"%

XK
A

r-regular graphs (deg=r at every node) with the same number of nodes




What WL cannot test?

Example of non-isomorphic graphs that cannot be distinguished
by Weisfeiler-Lehman test (outputs “possibly isomorphic”)

0

Any induced connected pattern with = 3 nodes (triangles, cycles, etc.)



What WL cannot test?

Example of non-isomorphic graphs that cannot be distinguished
by Weisfeiler-Lehman test (outputs “possibly isomorphic”)

SOIROL0

decalin bicyclopnetyl

Important implications e.g. in chemistry!



Expressive power of Weisfeiler-Lehman

f:G » #rings(G)

All permutation-
invariant functions

Adapted from Bevilacqua et al.
(LoG Tutorial 2022)



MPNNs vs WL

WL-test: X; < ¢(xi» {{Xj RS Nl}})

where ¢ is injective (hash function)

MPNN: X; < ¢ <Xi: D I/J(Xirxj) >

JEN;

MPNN expressive power is upper-bounded
by the Weisfeiler-Lehman test



MPNNs vs WL

WL-test: X; < ¢(xi» {{Xj RS Nl}})

where ¢ is injective (hash function)

MPNN: X; < ¢ <Xi: D I/J(Xirxj) >

JEN;

When is MPNN as expressive as the
Weisfeiler-Lehman test?



Expressive power of MPNNs

All permutation-
invariant functions

Adapted from Bevilacqua et al.
(LoG Tutorial 2022)



Are all Aggregators the same?

ted L3t 3t}

Input mean

“skeleton” Distribution
of the multiset of the multiset



Are all Aggregators the same?

tA TA 2t

mean and max max mean and max
fail to distinguish fails to distinguish fail to distinguish



Graph Isomorphism Network (GIN)

Theorem: Assume graph node features are from a countable set. Then, an
MPNN with with injective aggregator o, update function ¢, and graph-wise
readout function, is as powerful as the Weisfeiler-Lehman test.

Assumption of discrete countable features (often not the case in practice)

Proof similar to DeepSets, with the difference that we now deal with multisets, where
popular injective set functions such as mean are not injective anymore

GIN: uses an injective multiset function of the form

MLP ([ (1 + e)x; + Z X;
JEN;

Xu 2019; (Morris 2019)



Expressive power of GIN (“best MPNN")

/

Functions that can be
computed by GIN

—p More expressive

Functions that can be GNNs

computed by WL \

All permutation-
invariant functions

Adapted from Bevilacqua et al.
(LoG Tutorial 2022)



What to do with continuous features?

Many practical applications rely on assumption of continuous (uncountable) features

Most of the results we have seen (DeepSets, GINs, etc.) do not work in this setting!

Theorem: In order to discriminate between real multisets of size n, at least n
aggregators are needed.

Proof: relying on Borsuk-Ulam Theorem (continuous function from S™ to R™ maps some pairs of antipodal
points to the same point)

Corso et al. 2020



Principal Neighbourhood Aggregation (PNA)

Use a combination of multiple aggregators defined as moments of neighbour features

] U
[]-| 5= 0 o]z,
S(D,a=—1) min

a
(scalers S(d, ) = (@) emphasize hub nodes and allow for aggregators like sum)

Empirically good performance

Corso et al. 2020



Principal Neighbourhood Aggregation (PNA)

PNA 313 |-2.89|-2.89(-3.77|-2.61|-3.04|-357| Best
PNA (noscalers) | -2.77 |-2.54|-2.42 |-2.94 |-2.61|-2.82 [-3.29
MPNN (max) | -2.53 |[-2.36|-2.16 |-2.59 |-2.54 |-2.67 |-2.87
MPNN (sum) | -2.50 |[-2.33|-2.26|-2.37 |-1.82|-2.69 |-3.52

GAT -2.26 |-2.34|-2.09 [-1.60|-2.44 (-2.40 | -2.70
GCN -2.04 |-2.16|-1.89|-1.60|-1.69 |-2.14|-2.79
GIN -199 |-2.00|-1.90 [-1.60|-1.61 (-2.17 | -2.66
Baseline -1.38 |-1.87|-1.50|-1.60|-0.62 |-1.30 |-1.41| Worst
1. Single-source shortest-paths 4. Connected
2. Eccentricity 5. Diameter
3. Laplacian features 6. Spectral radius

Mean log error of different aggregators on different tasks

Corso et al. 2020



Towards More Expressive GNNs

VA Ly

Cy
Higher-order Positional & Subgraph Topological
WL tests Structural encoding GNNs message passing
Maron et al. 2019 Monti, Otness et B 2018 Papp et al. 2021 Bodnar, Frasca et B 2021
Morris et al. 2019 Sato 2020 Cotta et al. 2021
Dwivedi et al. 2020 Zhao et al. 2021
Bouritsas, Frasca et B 2020 Bevilacqua, Frasca et B, Maron 2021

...many more Frasca et B, Maron 2022



HIGHER-ORDER GNNs




WL test

$(O,{O,0})

Vo

Node colour
refinement



k-WL test

Colour adjacent k-tuples v € V¥ instead of nodes

Subgraph colour

refinement



k-WL test

Colour adjacent k-tuples v € V¥ instead of nodes

k-tuples are adjacent if they differ in one node; the
jh neighbourhood of v is defined as

]\fv'j = {(vl, e Vi1, W, Vjyq, ...,vk) W E V}

Ny 1

Subgraph colour

refinement



k-WL test

Colour adjacent k-tuples v € V¥ instead of nodes

k-tuples are adjacent if they differ in one node; the
jh neighbourhood of v is defined as

]\fv'j = {(vl, e Vi1, W, Vjyq, ...,vk) W E V}

\Y For every tuple v € vk, update the colour

NV,Z
cl)(cv, o Y ch,k)

Subgraph colour where ¢y . = {ew:wen,}
refinement



k-WL test
o foo,00ohle ool

Moo qeo o

Subgraph colour

refinement

Note: there are two slightly different versions of the high-dimensional WL test referred to as “k-WL” and
“folklore k-WL” that differ in the update step.



What graphs can k-WL distinguish?

All graphs

Babai, Mathon 1979 (k-WL)
Cai, Fiirer, Inmerman 1992 (CFI graphs)



What graphs cannot 3-WL distinguish?

Strongly reqular graphs cannot be distinguished by 3-WL

Bouritsas, Frasca et B 2020



What graphs cannot k-WL distinguish?

_______

JUARNN Y MANN
Ly KLE»

N4

Cai-Fiirer-Immerman (CFI) graphs

Cai, Fiirer, Immerman 1992 (CFI graphs)



Various k-WL-like GNNs

k-GNNs mimics the k-WL test by working with subgraphs of size k:

Xy & CI) (wlxv + Z W2Xu>

uewN,
where N, ={u eV¥®: lunv| =k -1}
Complexity: 0(n*)

More efficient variants

Sparse neighbourhoods

Sparse sets of k-tuples

Morris et al. 2019; Morris et al. 2020; Morris et al. 2022



Towards More Expressive GNNs

VA Ly
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Higher-order Positional & Subgraph Topological
WL tests Structural encoding GNNs message passing
Maron et al. 2019 Monti, Otness et B 2018 Papp et al. 2021 Bodnar, Frasca et B 2021
Morris et al. 2019 Sato 2020 Cotta et al. 2021
Dwivedi et al. 2020 Zhao et al. 2021
Bouritsas, Frasca et B 2020 Bevilacqua, Frasca et B, Maron 2021

...many more Frasca et B, Maron 2022



POSITIONAL ENCODING




What does WL test see?

Lol U




Node encoding

“Colouring” nodes removes (some) ambiguity



How to “colour” nodes?

Random

Substructure count

Laplacian/ Adjacency eigenvectors
Gradients of global encoding (“direction”)
Shortest path distance

Diffusion kernel

Random walk kernel

...many more



Random node features

rMPNN: Attach a random feature to every node of the graph, then apply MPNN
Output of rMPNN is a random variable

Not permutation invariant! (only in expectation)

Probabilistic Universal Approximation: Let f/ be a permutation-invariant
graph function. Then, for all €,§ > 0, there exists an rMPNN f that (¢, 6)-
approximates f, in the sense that

P([f(G)-f(G)| <e)=1-6

Embedding dimension O (n*§)

Extensions to equivariant functions, weighted graphs, etc.

Abboud et al. 2021; Sato 2021



Graph Substructure Network (GSN)

Choose a bank of substructures containing graphs H of size k = 0(1)
Count the occurrence of each H in every node/edge of the input graph

Subgraph counts

Induced subgraph counts

H=subgraph H=induced
of G subgraph of G
VyCV, EyCE Ey = E N VyXVy

H = (VH» EH) G = (V.E)

Bouritsas, Frasca et B 2020



Graph Substructure Network (GSN)

Choose a bank of substructures containing graphs H of size k = 0(1)
Count the occurrence of each H in every node/edge of the input graph

Use the counts as additional node/edge features

| | | |
2
| | | |
| | | |
2
| | | |
substructure bank

Bouritsas, Frasca et B 2020



Graph Substructure Network (GSN)

Choose a bank of substructures containing graphs H of size k = 0(1)
Count the occurrence of each H in every node/edge of the input graph

Use the counts as additional node/edge features

L)y (X3 DT

substructure bank

Bouritsas, Frasca et B 2020



Graph Substructure Network (GSN)

Choose a bank of substructures containing graphs H of size k = 0(1)
Count the occurrence of each H in every node/edge of the input graph

Use the counts as additional node/edge features

Complexity: precomputation (substructure counting, which is worse case is 0(n*) but
in practice much more optimistic) + standard MPNN (linear complexity O(|E|)~0(n))

Theorem: GSN is strictly more expressive than WL if

H is not a star graph, and counting is done using subgraph matching; or

H is of size k = 3, and counting is using induced subgraph matching.

Bouritsas, Frasca et B 2020



Graph Substructure Network (GSN)

Choose a bank of substructures containing graphs H of size k = 0(1)
Count the occurrence of each H in every node/edge of the input graph

Use the counts as additional node/edge features

Complexity: precomputation (substructure counting, which is worse case is 0(n*) but
in practice much more optimistic) + standard MPNN (linear complexity O(|E|)~0(n))

Theorem: GSN is not less expressive than 3-WL.

Proof: by example

Bouritsas, Frasca et B 2020



What graphs can GSN distinguish?

Strongly Regular (SR) graphs cannot be distinguished by 3-WL
but can be distinguished by GSN with 4-clique count

Bouritsas, Frasca et B 2020



What graphs can GSN distinguish?

All graphs

Bouritsas, Frasca et B 2020



What graphs can GSN distinguish hypothetically?

All graphs

Bouritsas, Frasca et B 2020



What graphs can GSN distinguish hypothetically?

GSN withk =n—1
subgraphs if the
Graph Reconstruction

Conjecture holds

All graphs

Bouritsas, Frasca et B 2020



Graph Substructure Network in practice
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Bouritsas, Frasca et B 2020
Slide adapted from Bevilacqua et al. (LoG 2022 tutorial)
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Graph Substructure Network in practice
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Molecule property prediction on ZINC
using GSN with different substructures

Bouritsas, Frasca et B 2020
Slide adapted from Bevilacqua et al. (LoG 2022 tutorial)

Molecule of caffeine

Substructure =
application-specific
inductive bias
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SUBGRAPH GNNs




Subgraph GNN’s

I !

WL colouring colour histogram




Subgraph GNN’s

O O
O—O
O—O
O O
O—O
O—O

X
A

1B

WL colouring colour histogram

Graph perturbation allows to distinguish between structures
otherwise indistinguishable by Weisfeiler-Lehman

Papp et al. 2021; Cotta et al. 2021; Zhao et al. 2021 Bevilacqua, Frasca et B, Maron 2022; Frasca et B, Maron 2022



Collection of Subgraphs i

+-—(0O0—O

i

mmmm
17

I O

A mu1t1set of subgraphs obtamed by edge delet10n

Bevilacqua, Frasca et B, Maron 2022; Frasca et B, Maron 2022
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Collection of Subgraphs i

i

+-—(0O0—O

191,38 11,
19 18 11"

A multiset of subgraphs obtained by node deletion

Bevilacqua, Frasca et B, Maron 2022; Frasca et B, Maron 2022



Graph Reconstruction Conjectures

Graph Reconstruction Conjecture: A graph
H is said to be a reconstruction of

G (denoted H~G) if they have the same
multiset (deck) of node-removed subgraphs

(cards). If G and H are two finite, undirected,

simple graphs with at least three vertices and

H is the reconstruction of G, then H = G. P. Kelly S. Ulam

Collection of subgraphs determines the
graph isomorphism class

Kelly 1942 (PhD thesis where the Conjecture appeared); Kelly 1957 (reconstruction from k-subgraphs); McKay 1997 (proof for small graphs);
Nydl 2001 (k-reconstructability for certain graph families)



Graph Reconstruction Conjectures

Graph Reconstruction Conjecture: A graph
H is said to be a reconstruction of

G (denoted H~G) if they have the same
multiset (deck) of node-removed subgraphs

(cards). If G and H are two finite, undirected,
simple graphs with at least three vertices and

S. Ulam

H is the reconstruction of G, then H = G.

Proven for small graphs with n < 11 nodes
Open question in general

Generalisations for subgraphs of size n — k

Kelly 1942 (PhD thesis where the Conjecture appeared); McKay 1997 (proof for small graphs);
Kelly 1957 (reconstruction from k-subgraphs); Nydl 2001 (k-reconstructability for certain graph families)



Equivariant Subgraph Aggregation Networks

input graph

multiset of subgraphs Tensor representation

Symmetry group of subgraph colection G = S, XS;,

Bevilacqua, Frasca et B, Maron 2022; Frasca et B, Maron 2022
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TOPOLOGICAL MESSAGE PASSING




Cell complexes

A\ g
7

Cell (CW)
complex

Set



Topological Message Passing

Lift the graph into a cell complex

2-dim
Hierarchical message passing
Strictly more expressive than
Weisfeiler-Lehman

1-dim

0-dim

Bodnar, Frasca et B. 2021



1-CLIP / A stochastic (results in expectation) oo-CLIP/
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(k—1)-Folklore GNN (/-  8-k-LWL+
kTSAN PPGN)
A (k-CL) —$CWN .................... /./. .......................................................................................................................................
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_CWN ................................. ? ..........................................................................................................................................................................................
A Graphormer
¢
? DSS-GNN
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o Caveats
A D(:N ® DS-GNN / 1-OSAN
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4, MPNN /GIN 2-1GN / 2-GNN A convergence
. @ b @ tuning / selection
A preprocessing
GCN node-based A invariance

EL ¢ Subgraph GNNs T{‘ unknown relation
3 message-passing g ? unproven low./upp.

Source: Bevilacqua, Frasca, Maron: LoG Tutorial 2022 higher-order (beyond pairwise)



Takeaways

Message-Passing GNNs are upper-bounded in their expressive power by the
Weisfeiler-Lehman graph isomorphism test

Several ways to enhance expressive power:
Higher-order WL-tests
Structural and positional encoding
Subgraph aggregation methods
Graph lifting to simplicial / cellular complexes & topological message passing

Generalisation power of GNNs is an open question

Next: is Weisfeiler-Lehman formalism the end of story? (No!)



Key Concepts

Graph isomorphism
Weisfeiler-Lehman tests
Positional and structural coding

Reconstruction Conjectures



Main References

* M. Bronstein et al., Geometric deep learning, arXiv:2104.13478, 2021. Section 4.1 “Graphs and
sets” and Section 5.3 “Graph neural networks”

+ C. Morris et al., Weisfeiler and Leman go Machine Learning: The Story so far,
arXiv:2112.099992, 2021. Introductory text on k-WL tests and various equivalent GNNs

* B. Bevilacqua, F. Frasca, H. Maron, Exploring the practical and theoretical landscape of
expressive GNNs, LoG tutorial 2022. Expressive power and advanced GNN architectures



https://arxiv.org/pdf/2104.13478.pdf
https://arxiv.org/pdf/2112.09992.pdf
https://www.youtube.com/watch?v=ASQYjbUBYzs
https://www.youtube.com/watch?v=ASQYjbUBYzs

Additional References

Z. Chen et al., On the equivalence between graph isomorphism testing and function
approximation with GNNs, NeurIPS 2019. Universal approximation in GNNs

K. Xu et al., How powerful are graph neural networks?, ICLR 2019. Proof of equivalence
between WL-test and MPNN + GIN architecture

M. Bronstein, L. Cotta, F. Frasca, H. Maron, Using subgraphs for more expressive

GNNs, Towards Data Science blog post 2021. Diverse subgraph methods + Reconstruction
conjectures

C. Bodnar, F. Frasca, et al., Weisfeiler and Lehman go cellular: CW networks, NeurIPS
2021. Topological message passing



https://proceedings.neurips.cc/paper/2019/file/71ee911dd06428a96c143a0b135041a4-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/71ee911dd06428a96c143a0b135041a4-Paper.pdf
https://openreview.net/pdf?id=ryGs6iA5Km
https://towardsdatascience.com/using-subgraphs-for-more-expressive-gnns-8d06418d5ab
https://towardsdatascience.com/using-subgraphs-for-more-expressive-gnns-8d06418d5ab
https://openreview.net/pdf?id=uVPZCMVtsSG

Main Ingredients of an MPNN
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Weisfeiler-Lehman hierarchy

A
k-WL CFI graphs k-GNNss

Maron et al. 2020; Morris et al. 2019

3-WL

Subgraph Union Network

Frasca et B 2022

strongly regular

increasingly expressive test

Sidikeogoge

1-WL d-reqular MPNNs

Xu et al. 2019

GNN expressive power

Weisfeiler, Lehman 1968 (2-WL); Babai, Mathon 1979 (k-WL)
Cai, Furer, Immerman 1992 (CFI graphs)



Weisfeiler-Lehman hierarchy

A
k-WL CFI graphs

1 triangle

3-WL

2 triangles

1 4-clique

strongly regular

Sidikeogoge

increasingly expressive test

1-WL d-regular
GNN expressive power Structural encoding
Weisfeiler, Lehman 1968 (2-WL); Babai, Mathon 1979 (k-WL); Bouritsas, Frasca et B 2020

Cai, Furer, Immerman 1992 (CFI graphs)



Weisfeiler-Lehman hierarchy Graphs may be unfriendly for
message passing resulting in

{ k-WL “bottlenecks”

CFI graphs

3-WL

Gap between
WL strongly reqular Theory & Practice

SEREL0

2

increasingly expressive test

1-WL d-regular
GNN I “Graph iring”
eXpr essive pOWGI' rap rew1rmg
Alon, Yahav 2020 (bottlenecks); Hamilton et al. 2017 (neighbour
Weisfeiler, Lehman 1968 (2-WL); Babai, Mathon 1979 (k-WL); sampling); Klicpera et al. 2019 (diffusion); Topping, Di Giovanni

Cai, Fiirer, Immerman 1992 (CFI graphs) et B 2022 (Ricci flow); Deac et al. 2022 (expanders)



57 %

CNN Equivariant GNN Subgraph GNN  Cellular GNN  Positional encoding
canonical node +data symmetry product symmetry ~ high-order +extra features
ordering group group complex

DeepSet/PointNet GNN Transformer
no graph input graph learnable graph



57 %

CNN Equivariant GNN Subgraph GNN  Cellular GNN  Positional encoding
canonical node +data symmetry product symmetry ~ high-order +extra features
ordering group group complex
© o
o O
o 00
o O ©
®)
o ©
@)
DeepSet/PointNet GNN Graph rewiring Transformer

no graph input graph precomputed graph learnable graph



TRANSFORMERS




What graph should we use in GNNs?

© o
o O
o 0°©
o O ©
o ©° °©
O
DeepSet GNN ?
no graph at all input graph Complete graph
— Throws away + Learn the “right”
important data graph for the task

— High complexity
— “Too much flexibility”



Transformers

Assume the graph is complete (every node is connected to every node)

Apply a Convolutional GNN:

¢ | x;, z a;jy(x;)

JEN



Transformers

Assume the graph is complete (every node is connected to every node)

Apply a Convolutional GNN:
¢ Xi:z a; V(x;)
=

equal for every node!



Transformers

Assume the graph is complete (every node is connected to every node)

Apply an Attentional GNN:

n

¢ sz a(x;,%;)W(x;)

j=1
Attention weights = learned graph adjacency on the downstream task

Transformer architecture, which has recently become predominant in NLP task, is a
special type of GNN!

Vaswani et al. 2017; Joshi 2020



Transformers

Assume the graph is complete (every node is connected to every node)

Apply an Attentional GNN:

n

(I) Xi,z CZ(Xi,X]', Pi, p])“lj(x])

j=1
Attention weights = learned graph adjacency on the downstream task

Transformer architecture, which has recently become predominant in NLP task, is a
special type of GNN!

Tasks in NLP often require position-dependent functions (not permutation-invariant),
which is achieved through positional encoding

Vaswani et al. 2017; Joshi 2020
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Transformers

Vaswani et al. 2017; Joshi 2020



Positional encoding
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Embedding dimension

Typical positional encoding used in Transformers on a 1D grid



Positional encoding

Unique? Complexity
Substructures of size k Yes O (nk)*
k Laplacian eigenvectors No 0(n*) + 0(n*)™

2% sign flips

Random Walk kernels Yes 0(n?) + 0(n3)#x*

*In practice better for many substructures such as triangles
“Depending on the sparsity of the Laplacian



geometric
(Local structure)

¥

Supervision
stgnal
Input Layer 1 Layer 2 Layer 3

semantie

Segmentation

Wang et B 2018



Differentiable Graph Module

Differentiable Graph Module (DGM) allowing to construct the graph

Kazi, Cosmo et B 2020

Graph

Node feature
learning

th
1™ layer [ L+ 1% tayer
1
Q) I - (1) X(Hl)
X T ;X >
l
DGM A : —{xX" | DGMm A .
1
1
1
(1) (1+1)
> Diffusion : X > Diffusion >
1
1

from the data and use it for feature learning

Method TADPOLE ' UK Biobank ‘
Transductive Inductive Transductive Inductive
DGCNN | 84.59+4.33 82.99+4.91 58.35+0.91 51.84+8.16
LDS 87.06+3.67 T OOM T
cDGM 92.91+2.50 91.85+2.62 | 61.32+1.51 55.91+3.49
dDGM | 94.10+2.12 92.17+3.65 | 63.22+1.12 57.34+5.32

Disease classification accuracy



Latent Simplicial Complex Learning

AN
A

(b) Epoch 40, %, = 90, h = 0.4 (c) Epoch 180, %, = 20, h = 0.99

00,0, DCM
GNN

0 9060 | [«pem]=> mpd P > >
Y oo CONN

Battiloro et B, Scardapane, Di Lorenzo 2024 Differentiable Cell Complex MOdUle




OVERSQUASHING &
GRAPH REWIRING




What graph should we use in GNNs?

© o
o O
o 00
o O ©
o ©°°
@)
DeepSet Classical MPNN Transformers
no graph at all input graph complete graph
— Throws away + Learn the “right”
i h for the task
important data Graph rewiring gr-ap or the 'as
add/remove edges - High complexity

— Hard to generalise



What graph should we use in GNNs?




What graph should we use in GNNs?

Preserve locality (“input graph inductive bias”)
Preserve sparsity (computational efficiency)

Improve connectivity (to reduce over-squashing)

Barbero, Velingker, Saberi, B, Di Giovanni 2023



“Failure of Message Passing to propagate
information on the graph”



Over-squashing

(4

(ol -] 0 06O 0000 000000 o 0 oO0®o oQ@ @ O

In small-world graphs metric ball volume grows
exponentially with ball radius

graph topology

Over-squashing — | EENOINSIONES

+ Long-range interactions

Alon, Yahav 2020



Over-squashing

Consider an MPNN of the form

xgk“) =0 <W1x§k) + z aij szg.k)>
J
L = depth (number of layers)
p =width (hidden dimension)
Nonlinearity o is cs-Lipschitz-continuous

w = maximum element of weight matrices W;, W,

Theorem (Sensitivity bound): For any i,j € V Over-squashing: small Jacobian
(L)
ox;

l

|| axl@ / ax]@) ” indicates poor

< (cgwp)" (1= .)le
1 model topology

ax§.°) information propagation from
input node

Topping, Di Giovanni et B 2021; Di Giovanni et B 2023



Preventing over-squashing

ang)
(0)
axj

< (egwp)" (1= l);

1 model topology

Width p helps mitigate over-squashing (potentially at the risk of worse generalization)

Depth L does not help
If L~diam(G), over-squashing occurs between distant nodes
If L > 1, we transition from over-squashing to vanishing gradients
Topology of G has the largest effect on over-squashing, which occurs
Between nodes with high effective resistance Res(i, j) «< t(i,j) = commute time

On graphs with small Cheeger constant h(G) = energy required to disconnect the graph into
two communities)

Edges with strongly negative discrete Ricci curvature k(i, j)
Di Giovanni et B 2023



Effective Resistance & Commute Time

Commute time 7(i,j) = expected number of steps a random walk on a graph starting
from node i will take to reach node j and come back

Effective resistance Res(i, j) = voltage difference between nodes i and j if a unit
current flows through the graph where every edge has unit resistance

7(i,j) = 2|E|Res(i, j)

Chandra et al. 1996



Cheeger constant

The Cheeger constant of a graph G = (V,E) is defined as

e = {(i,j) €EE s.t. i€ U and j €V \ U}
(6) = vey min{vol(U), vol(V)}

where vol(U) = X ¢y d;-

(Cheeger 1970)




Cheeger constant

The Cheeger constant of a graph G = (V,E) is defined as

e = |{(i,j) EE s.t. i€ U and j eV \ U}
(6) = vey min{vol(U), vol(V)}

where vol(U) = X ¢y d;-

(Cheeger 1970)



Cheeger constant

The Cheeger constant of a graph G = (V,E) is defined as
NG, ) EE s.t.i€U and j € V\ U}
h(G) = min ,
ucv min{vol(U), vol(V)}
where vol(U) = X ¢y d;-

Energy required to disconnect G into separate communities
("bottleneck” if h is small)

h? : :
;G), where 1, is the first non-

Cheeger inequality: 2h(G) = 4, >

zero eigenvalue (“spectral gap”) of the normalised graph Laplacian

(Cheeger 1970)



Preventing over-squashing

(L)
0X;

L L
axz") < (cgwp)" (I1=H);,
7T model topology

Di Giovanni et B 2023
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When oversquashing might occur?



Ricci Curvature on Manifolds

Spherical (>0) Euclidean (=0) Hyperbolic (<0)

“geodesic dispersion”

Ricci 1903



Graph analogues of Ricci curvature

Clique (>0) Grid (=0) Tree (<0)



Graph Ricci curvature

Multiple definitions of curvature on graphs, two main
Forman (combinatorial)
Ollivier (optimal transport)

Balanced Forman Curvature of edge i~j in simple unweighted graph is

k(i,j) =0 if min{di, d]-} = 1, otherwise Max number of 4-cycle based at i~j
Triangles based at i~j traversing the same node
coN 2,2 A(L) AL Ymax i (1 s oo .
K(l’]) n d; + d; t+2 max{di,dj} + min{d;d;} + max{d;d;} (|1¢D (l,])| + |1¢D}\(l’])|) 2
Degree of i Neighbours of L forming a 4-cycle

based at L~j (w/o diagonals)

Forman 2003; Ollivier 2007; Topping, di Giovanni, et B. 2021



Graph Ricci curvature

Multiple definitions of curvature on graphs, two main
Forman (combinatorial)
Ollivier (optimal transport)

Balanced Forman Curvature of edge i~j in simple unweighted graph behaves
similarly to the continuous Ricci curvature

Cycle Cs: % Cp: 1 Cras: O Clique Ky: — Grid G,: 0 Tree T,: ﬁ —2

Forman 2003; Ollivier 2007; Topping, di Giovanni, et B. 2021



What contributes to over-squashing?

Theorem: (informal) strong negatively-curved edges contribute to over-squashing.

k
@
q
@
@
Clique (>0) Grid (=0) Tree (<0)

Topping, Di Giovanni et B 2021; *No contradiction to using expander graphs (which have negative curvature)



Curvature-based rewiring

Input: graph G = (V,E), temperature t > 0, (optional ()
For edge i~j with smallest k(i, j)

Calculate the improvement &y; = (i, j) — k(i, j) from
adding edge k~[ with k € B;(i) and [ € B;(j)

Sample index k, [ with probability Softmax(zdy;) and add
edge k~[ to E’

(optional) Remove edge i~j with largest Ric(i,j) > C

Output: new graph ¢' = (V,E’)

Topping, di Giovanni, et B. 2021




Ricci flow

Ricci flow: “diffusion of the Riemannian metric”

agij
or

R/
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G. Ricci-Curbastro R. Hamilton

Evolution of a manifold under Ricci flow

Ricci 1903; Hamilton 1988;
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Ricci 1903; Hamilton 1988; Perelman 2003

G. Perelman

G. Ricci-Curbastro

R. Hamilton



Curvature- vs Diffusion-based Rewiring

Edge: Ricci curvature

Original DIGL
Cornell graph +308% edges

Topping, di Giovanni, et B. 2021; Klicpera et al. 2019 (DIGL)

Curvature rewiring
+36% [ -36% edges

o
=)

Node: max Jacobian from 2-hops



What contributes to over-squashing?

Theorem: (informal) large commute-time distances contribute to over-squashing.

Spectral rewiring:'” increase the Cheeger
constant of the graph (“clusteredness”),
which leads to lower commute time

Spatial rewiring:” inserting edges reduces
the total effective resistance of the graph

(=commute-time distance up to scale) A\ ! *é .
\ g
Bounded-degree expanders® have commute ) i §“
time O(|E|); over-squashing effect is Original
independent on the size of the graph graph

Di Giovanni, Giusti, Barbero, Luise, Lio’, B 2023

Spectral Spatial
rewiring rewiring

! Arnaiz-Rodriguez et al. 2022 (DiffWire); 2Karhadkar et al. 2022; 3Abboud et al. 2022; *Mialon et al. 2022; >Abu-El-Haija et al. 2019; *Deac et al. 2022 (EGP) & many more



Graph Rewiring Approaches

Connectivity Diffusion
(DIGL)

Gasteiger et al. 2019
e KNN graph on PPR embedding
+ Good for homophilic graphs

— Bad for heterophilic graphs
— Drastically different graph

Expander Propagation

Discrete Ricci flow

(SDRF) (EGP)
Deac et al. 2022

Topping, Di Giovanni et B. 2022

e Remove negatively-curved edges ¢ Fixed expander graph
e Alternate MP on original and

+ Good for both homophilic and
new graph

heterophilic graphs
+ “Surgical” rewiring + Optimal graph for MP
— No relation to input graph

— Curvature is computationally
— No permutation equivariance

expensive

No relation to the task!



Why it 1s important to consider the task?

S

Van der Waals interactions Coulomb interactions

o 12 o« r~1

Same graph+features, different task

Whether the graph is good depends on the task!



LONG-RANGE INTERACTIONS &
EXPRESSIVE POWER




Long-range interactions in graph tasks

Task = a function f(X) on the node features of a graph G

The interaction between features in nodes i and j required for the task is given by

. NP 0°f(X)
Mixing of f: mixf(i,j) = max max
X 1=a,f=d axlgxax]p

fX) = p(x;) + qb(xj) is fully separable, thus mix¢(i, j) = 0
fX) = ¢((x;,%x;)) mixing depends on how non-linear ¢ is

Di Giovanni, Rusch, B, Deac, Lackenby, Mishra, Velickovi¢ 2023



Capacity bounds

E-1
mix;(1,/) < ) (qw)? 1 (w(8%%)" diag(178*)8** + W)
task k=1 model topology J

What is the capacity of MPNN required for a given task?

model + topology

Di Giovanni, Rusch, B, Deac, Lackenby, Mishra, Velickovi¢ 2023



Capacity bounds

L—-1

mix; (i, j) < Z(caw)“-k-1 (W(SL'k)Tdiag(lTSk)SL'k + CQk)__
k=1 J
Bound on weights w Bound on depth L

(amixf (i,j) — ,B)

- _—r
> -(mle(u)

1/a@D m(l, E
) L> ( I) | |
C2 a

TN

dmin =min node degree d; =degree of node i

Fixed depth L = [d(i, ) /2] a, f =model-related constants
q =number of paths of length d(i, j) |E| =number of edges
between i and j Bounded weights

Di Giovanni, Rusch, B, Deac, Lackenby, Mishra, Velickovi¢ 2023



Capacity bounds

L—-1

mix, (i, j) < Z(C"W)ZL_R_l (w(s**)" diag(175¥)s" ¥ + €Qy) |
k=1

Bound on weights w

. .o 1/d(i,g
- dmin (mle(l’])> /a(i,j)

G q

w

“weights need to be large enough
to allow mixing”

Di Giovanni, Rusch, B, Deac, Lackenby, Mishra, Velickovi¢ 2023

(i, j E
- (])_I_ |E|

Lj

Bound on depth L

e, " Jad (amix;(i,j) — B)

Depth must be ~commute time t(i, j)
Rewiring tries to improve T

T can be as large as 0(n?), which implies
impossibility statements



New way of characterising expressive power

Expressive power (informal): MPNN with L < n

layers CARMOICATIIAORS that require high mixing

among features at nodes with large commute time.

B. Weisfeiler

Di Giovanni, Rusch, B, Deac, Lackenby, Mishra, Velickovi¢ 2023



EXOTIC MESSAGE PASSING




What




O, ’
What + Where w,j
e



What + Where + JNIREH




Classical MPNN Graph Transformer

Gutteridge, Di Giovanni et B 2023



Dynamic Rewiring Dynamic Rewiring + delay
Gutteridge, Di Giovanni et B 2023 (DRew) (VDRew)



Experimental validation

Model

Peptides-func

Peptides-struct

PCQM-Contact

PascalVOC-SP

AP 1

MAE |

MRR 1

F1 1

Classical MPNN
Rewiring+MPNN (DIGL)
Multi-hop (MixHop-GCN)

Graph Transformer (GT)

0.60690.0035
0.6830£0.0026

0.6843+0.0049

0.6326£0.0126

0.3357£0.0006
0.2616£0.0018
0.2614+0.0023

0.2529+0.0016

0.324240.0008
0.1707x0.0021
0.3250=+0.0010
0.3174=0.0020

0.2860=+£0.0085
0.2921£0.0038
0.2506=0.0133
0.2694=£0.0098

0.3337+0.0006 0.374840.0109
0.344240.0006 0.331440.0024

0.250040.0005
0.2536+0.0015

GraphGPS (GT+MPNN)
vDRew-MPNN

0.6535£0.0041
0.7150+0.0044

Evaluation on Long-Range Graph Benchmark

Gutteridge et B 2023



Cooperative Message Passing

Standard Message Passing Cooperative Message Passing
each node Broadcasts & Listens each node individually decides

Finkelshtein, Huang, B, Ceylan 2023



Cooperative Message Passing

Broadcast & Listen Broadcast Isolate
Listen

Finkelshtein, Huang, B, Ceylan 2023



Cooperative Message Passing

iyl <

MPNN

ot ol 1043 f%

Co-GNN

Finkelshtein, Huang, B, Ceylan 2023



Takeaways

Input graph is not necessarily the best choice for message passing
Graph rewiring separates input & computational graphs in attempt to avoid over-
squashing
Various rewiring techniques based on
Discrete Ricci curvature
Commute time / resistance distances
Spectral properties such as ”connectedness”

The graph structure impacts the expressive power of MPNN, which can be captured
through the mixing ability of the GNN

Advanced rewiring: dynamic (DReW) or implicit (cooperative GNNs)



Key Concepts

Transformers and latent graph learning
Graph rewiring

Graph Ricci curvature

Commute time

Dynamic rewiring

Co-operative GNNs
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